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Abstract. This study extended the computation of GLCM (gray level
co-occurrence matrix) to a three-dimensional form. The objective was to
treat hyperspectral image cubes as volumetric data sets and use the
developed 3D GLCM computation algorithm to extract discriminant
volumetric texture features for classification. As the kernel size of the
moving box is the most important factor for the computation of GLCM-
based texture descriptors, a three-dimensional semi-variance analysis al-
gorithm was also developed to determine appropriate moving box sizes
for 3D computation of GLCM from different data sets. The developed
algorithms were applied to a series of classifications of two remote sens-
ing hyperspectral image cubes and comparing their performance with
conventional GLCM textural classifications. Evaluations of the classifi-
cation results indicated that the developed semi-variance analysis was
effective in determining the best kernel size for computing GLCM. It
was also demonstrated that textures derived from 3D computation of
GLCM produced better classification results than 2D textures.

1 Introduction

Texture is one of the most important features used in various computer vision
and image applications. In visual interpretation as well as digital processing and
analysis of remote sensing images, texture is regarded as an essential spatial
characteristics and commonly used as an index for feature extraction and image
classification, especially when working on high resolution airborne and satel-
lite imagery. Computerized texture analysis focuses on structural and statistical
properties of spatial patterns on digital images. These methods have been applied
successfully to solve sophisticated problems, such as image segmentation [1],
content-based image retrieval [2] and detecting invasive plant species [3]. Previ-
ous studies [4, 5, 6] indicated that statistics-based texture approaches are very
suitable for analyzing images of natural scenes and perform well in image classifi-
cation. Among the various texture computing methods, gray level co-occurrence
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matrix (GLCM) originally presented by Haralick et al. [7] is probably the most
commonly adopted algorithm, especially for textural feature extraction and clas-
sification of remote sensing images.

Conventional texture analysis algorithms compute texture properties in a two-
dimensional (2D) image space. This may work well in panchromatic (single-band)
images and multispectral imagery with limited and discrete spectral bands. How-
ever, as imaging technologies evolve, new types of image data with volumetric
characteristics have emerged, for example, magnetic resonance imaging (MRI) in
medical imaging and hyperspectral images in remote sensing. Directly applying
traditional 2D texture analysis algorithms to these new types of imaging data will
not able to fully explore three-dimensional (3D) texture features in the volumetric
data sets. To address this issue, this study undertook the development of extend-
ing conventional 2D GLCM texture computation into a 3D form for better texture
feature extraction and classification of hyperpectral remote sensing images.

2 Hyperspectral Volumetric Texture Analysis

Hyperspectral imaging is an emerging technology in remote sensing. With tens
to hundreds of contiguous spectral bands covering visible to short-wavelength in-
frared spectral regions, hyperspectral remote sensing data provide rich informa-
tion about ground coverage. Because of the high resolution and abundant details
in the spectral domain, most existing hyperspectral analysis algorithms focused
on extracting spectral features from the data sets. For example, the minimum
noise fraction (MNF) transformation, spectrally segmented principal component
analysis [8] and derivative spectral analysis [9,10], all aimed at extracting useful
spectral features from complex hyperspectral data sets. For texture analysis of
hyperspectral imagery, most researchers applied conventional 2D texture algo-
rithms to a single band at a time and collected these 2D textures for subsequent
analysis. However, with the contiguous spectral sampling, a hyperspectral data
set can be considered as an image cube with volumetric characteristics as il-
lustrated in Fig. 1. Consequently, it should be possible to treat hyperspectral
imagery as volumetric data and investigate texture features in a 3D manner.

Currently, related works and applications in volumetric texture analysis are
still limited. A voxel co-occurrence matrix similar to GLCM was introduced by
Gao [11] to visualize and interpret 3D seismic data. A similar approach was also
used in analyzing MRI data [12]. Bhalerao and Reyes-Aldasoro [13] also demon-
strated a volumetric texture description for MRI based on a sub-band filtering
technique similar to the Gabor decomposition [14]. Another texture description
for medical imagery based on gray level run-length and class distance was pro-
posed and achieved promising results [1, 15]. Suzuki et al. [16] also extended
HLAC (higher order local autocorrelation) shape descriptors into 3D mask pat-
terns for the classification of solid textures. These methods had one thing in
common, i.e. they all dealt with isolating specific objects (body parts, organ
tissues etc.) from volumetric data sets. Although they worked well in identifying
target boundaries (shapes), they might not be suitable for extracting general
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Fig. 1. Hyperspectral imagery as an image cube

texture features in hyperspectral imagery. Other types of texture description,
such as models derived from Markov Random Field [17] and fractal geome-
try [18], might be able to extend to 3D forms, but the complexity and expense
in computation could seriously limit their usability in analyzing hyperspectral
image cubes. For hyperspectral remote sensing data containing natural scenes, a
general gray level statistics based texture descriptor might be more appropriate
and likely to achieve satisfactory feature extraction and classification results.

3 Methods and Materials

Texture features derived from GLCM are so-called second order texture calcula-
tions because they are based on the joint co-occurrence of gray values for pairs
of pixels at a given distance and direction.

3.1 3D GLCM Computation

For a hyperspectral image cube with n levels of gray values, the co-occurrence
matrix, M , is a n by n matrix. Values of the matrix elements within a moving
box, W , at a given displacement, d = (dx, dy, dz), are defined as

M (i, j) =
Wz−dz∑

z=1

Wx−dx∑

x=1

Wy−dy∑

y=1

CONDITION

CONDITION = (G (x, y, z) = i ∧ G (x + dx, y + dy, z + dz) = j)?1 : 0

(1)
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where x, y, z are denoted as the position in the moving box. In other words, the
value of a 3D GLCM element, M (i, j), reflects that within a moving box, how
often the gray levels of two pixels, G (x, y, z) and G (x + dx, y + dy, z + dz), with
the spatial relationship of d, are equal to i and j, respectively. Theoretically, there
can be numerous combinations of the spatial relationship or the displacement
vector, d. However, for the simplification of computation, it is usually set as one
pixel in distance and 13 combinations in horizontal and vertical directions.

The original GLCM reference [7] suggested 14 statistical measures to evaluate
the properties of GLCM. However, some of them are highly correlated and only
a few are recommended for use with remote sensing imagery because they are
more suitable for describing features in natural scenes [19,20,21]. Four statistical
measures were used in this study, including contrast (CON), entropy (ENT),
homogeneity (HOM) and angular second moment (ASM) as listed from Eq. (2)
to Eq. (5).

CON =
∑ ∑[

(i − j)2 Mij

]
(2)

ENT =
∑∑

(Mij · log Mij) (3)

HOM =
∑∑

{
1

1 + (i − j)2
Mij

}
(4)

ASM =
∑∑

M2
ij (5)

3.2 Semi-variance Analysis

Among the parameters affecting GLCM-based texture analysis, the size of the
moving box (kernel) has the most significant impact. A previous study demon-
strated that kernel size accounted for 90% of the variability in textural classifica-
tion [22]. During the evaluation, it usually requires a large kernel size to obtain
meaningful descriptions of the entire data set. However, for texture segmenta-
tion, a small moving box size is preferred in order to accurately locate boundaries
between different texture regions. Therefore, it is critical to determine the most
appropriate moving box size for GLCM calculations. In this regard, semi-variance
analysis has been proved an effect method to find the best moving box size for
GLCM computation [23, 3].

Let Z (xi) and Z (xi + d) be two pixels with a lag of d (a vector of specific
direction and distance) in three dimension. For all pixel pairs in a volumetric
data set, the semi-variance is defined as

γ (d) =
1

2N (d)

∑
[Z (xi) − Z (xi + d)]2 (6)

where N (d) is the number of pixel pairs in the data set. A typical semi-variance
curve is shown in Fig. 2. In practice, training regions of interested targets
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were selected from the data set to produce variance curves of different targets.
The purpose was to find the range where the semi-variance would reach its max-
imum (sill).

Fig. 2. Typical semi-variance curve of a 3D image cube

3.3 Test Data

Two hyperspectral data sets as displayed in Fig. 3 were used to test the perfor-
mance of the developed algorithms of 3D GLCM computation and semi-variance
analysis. The first data set was an EO-1 Hyperion image acquired in Jan. 2004,
which covers the Heng-Chun peninsula of southern Taiwan. Hyperion is a space-
borne hyperspectral imaging spectrometer (http://eo1.usgs.gov/hyperion.php).
It has 220 spectral bands covering 400-2500 nm in wavelength at a spectral sam-
pling interval of 10 nm and a nominal 30 meter spatial resolution. Because of the
low signal-to-noise ratio in the longer wavelength region, only forty five contin-
uous bands (band-11 to band-55) in the visible to near infrared (up to the first
water absorption region) were extracted from the original scene and resulting in
a 481x255x45 image cube for testing.

The second image cube used was acquired with an experimental high reso-
lution airborne hyperspectral imager called Intelligent Spectral Imaging System
(ISIS) (http://www.itrc.org.tw/Publication/Newsletter/no75/p08.php) in Sep.
2006. ISIS is a pushbroom instrument with 218 spectral bands (430-945 nm at
3.5-5 nm spectral resolution). The ISIS scene has a 1.5 meter spatial resolution
and covers a mountainous area with rich natural and planted forests in central
Taiwan. Spectral bands (band-20 to band-210) of the same wavelength region
used in the Hyperion data set were extracted from the original ISIS imagery.
An 800 pixels by 800 pixels sub-image centered with nadir track was selected as
the test area to minimize variations caused by the spectral ”smile” effect [24]
commonly seen in pushbroom sensors. Therefore, the testing ISIS data set was
a 800x800x190 image cube.
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(a) Hyperion (b) ISIS

Fig. 3. False color hyperspectral imagery

Other supplementary data included photo-maps, high resolution aerial pho-
tographs and landcover maps of the study areas. These data were primarily used
for geo-referencing (registering) the original images, selection of training regions
for semi-variance analysis and supervised classification as well as evaluating clas-
sification results.

4 Results and Discussions

Several tests were conducted on the two image cubes to evaluate performance
of the developed algorithms for 3D computation of GLCM. First, a series of
3D semi-variance analysis were applied to the two image cubes. Fig. 4 shows
examples of the semi-variance curves of four different targets to classify in the
Hyperion data. Different colored curves in Fig. 4 represent semi-variances at
different directions (azimuth, zenith) as labeled in the bottom of each plot. One
thing to note in the plots of Fig. 4 is the divergency of the red curve for each
target. The red semi-variance curves were computed along direction (0, 0). Unlike
MRI or other solid data sets, the third (Z) axis of a hyperspectral image cube
is the spectrum instead of a geometric axis. Therefore, direction (0, 0) tried
to calculate variance of the same pixel at two wavelengths without any spatial
consideration, thus diverging as the lag increased.

Semi-variance analysis in Fig. 4 indicated that 5 was the best kernel size for
the textural analysis of the Hyperion data. To test this hypothesis, three GLCMs
were generated with 3x3x3, 5x5x5 and 7x7x7 moving boxes. Supervised classifi-
cations were conducted on aforementioned four statistical measures with exactly
the same training and verification data randomly selected from ground truth
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(a) forest (b) built-up

(c) grassland (d) bare ground

Fig. 4. Semivariance curves of four different targets in the Hyperion imagery

landcover maps. The overall accuracies (OA) of the classifications are plotted
in Fig. 5. In this test, moving box of 5x5x5 produced the best results except
the CON. This has validated the effectiveness of the developed 3D semi-variance
analysis. In addition, to compare 3D GLCM computation with 2D GLCM, more
thorough classifications were conducted on features extracted from five feature
collections, including original spectral data, textures from 2D GLCM, textures
from 3D GLCM, original plus 2D textures and original plus 3D textures with the
three moving box sizes. Principal component analysis was used to select features
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from the five data groups. Fig. 6 illustrates the OA and Kappa values of the
classification evaluation. It is clear that 3D GLCM outperformed conventional
2D GLCM with or without the original spectral data. In addition, in the 3D
GLCM cases (G2 and G4 in Fig. 6), the best results were also generated from
the 5x5x5 moving box.

Fig. 5. Overall accuracies of different kernel sizes

Fig. 6. Evaluations of Hyperion classifications. Each group operated on three kernel
sizes (left to right: 3, 5, 7).

Similar tests were also performed on the ISIS data. There are four primary
vegetation ground coverages in the ISIS scene, including Taiwania fir, Japanese
cedar, maple, and bamboo. Fig. 7 displays the training regions selected for semi-
variance analysis and the classification results based on 2D and 3D textures
calculated with a kernel size of 5. The four vegetation types are color coded as
red, dark red, green and blue, respectively in Fig. 7. The training regions were
selected according to landcover maps provided by a local forestry administra-
tion agency. A visual inspection on Fig. 7 reveals that 2D textural classifica-
tion had completely misclassified the fir and cedar classes as maple or bamboo,
while 3D textures identified most of the two classes (as well as the other two)
correctly.
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(a) training data (b) 2D GLCM (c) 3D GLCM

Fig. 7. Classification results of the ISIS data with 2D and 3D GLCM features

Semi-variance analysis on the ISIS data set suggested that 5x5x5 and 7x7x7
moving boxes were the best for 3D computation of GLCM. A series of classifi-
cations similar to the ones applied to the Hyperion data were also carried out
on the ISIS data for a quantitative evaluation. The evaluation results are dis-
played in Fig. 8. In general, the best classification was resulted from features
extracted from original spectral data plus 3D textures computed with a 7x7x7
moving box. However, it was noted that the OA differences between 3D and 2D
textural classifications were insignificant. Part of the reason is because OA is an
overly optimistic evaluation for classification accuracy since it does not account
for omission errors. This can be contended by the observation that OA values in
Fig. 8 do not reflect the high omission errors in the 2D textural classification re-
sult of Taiwania fir (red) and Japanese cedar (dark red) categories as displayed in
Fig. 7. The relatively lower Kappa of 2D textural classification results is another
indication of the uncertainty. Another possible reason might have to do with
the characteristics of ISIS data. Because of the fine spectral resolution, texture

Fig. 8. Evaluations of ISIS classifications. Each group operated on three kernel sizes
(left to right: 3, 5, 7).
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features derived from 3D computation of GLCM may become highly correlated,
thus degrading the classification performance. The impact of spectral resolution
to 3D computation of GLCM in hyperspectral image cubes is still under inves-
tigation. Nonetheless, resampling the spectral resolution to a broader sampling
interval (for example, from 3.5-5 nm to 10 nm as the Hyperion data) might be
able to enhance the discriminability of hyperspectral 3D textures.

5 Conclusion and Future Work

This study treated hyperspectral image cubes as volumetric data sets and ex-
tended the computation of gray level co-occurrence into a 3D form to thoroughly
explore volumetric texture features of hyperspectral remote sensing data. A 3D
semi-variance analysis algorithm was also developed to obtain appropriate mov-
ing box (kernel) sizes for computing gray level co-occurrence in 3D image cubes.
Results of tests conducted on two hyperspectral image cubes validated that the
developed semi-variance algorithm was effective in determining the best moving
box sizes for 3D texture description. The experiments also demonstrated that
texture features derived from 3D computation of GLCM provided better classifi-
cation results than features collected from conventional 2D GLCM calculations.

The results of this study suggest that 3D computation of gray level co-
occurrence should be a viable approach to extract volumetric texture features
from hyperspectral image cubes for classification. It is also possible to apply
these techniques to other remote sensing data with volumetric characteristics,
such as LiDAR data with multiple returns or electro-magnetic scans. However,
there are still issues for improvement. For example, the impact of spectral reso-
lution to the correlations of generated texture features will need to be studied in
detail. Another interested research topic derived from this study will be to fur-
ther develop a third-order texture descriptor to truly represent three-dimensional
texture features of complicated hyperspectral and other volumetric data.
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