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Abstract—The large number of spectral bands in hyperspec- conditions with carefully prepared samples and can be a poor
tral data seriously complicates their use for classification. Selec- match to field reflectance [8].
tion of a useful subset of bands or derived features (spectral ra- A other common tactic is to continue to use traditional mul-

tios, differences, derivatives) is always desirable, strongly affects . e .
the accuracy of the classification, and is often a practical neces- tispectral classification procedures, adapting them to use hyper-

sity to keep the processing speed and memory requirements under SPectral data more effectively. The typical approachis to selecta
control. This paper examines one possible procedure for selecting few suitable bands or simple spectral features to optimize multi-
spectral derivatives to improve supervised classification of hyper- spectral algorithms, thereby reducing the hyperspectral data set
spectral images. The procedure is designed to identify derivative 1, 5 myltivariate data set tailored to the specific application (e.g.,
features that are more effective at separating target classes and . ) . .
then add them to a base subset of features for classification. The (61, {1, [91, [1_0])' The main _drawback W'_th simply selecting a_
goal is to create the smallest set of features that will result in the Small set of discrete bands is that there is a real danger that im-
best classification result. A key issue in this process is the interplay portant spectral information will be ignored.
of the number of features and the size of the training data sets since  Several tools have been developed specifically to address the
classification accuracy declines if the dimensionality of the feature gfficiant selection of spectral features from hyperspectral data
space is too large relative to the number of training samples.
sets. Among these are band moments [11], orthogonal subspace
~ Index Terms—Computer-aided data analysis, hyperspectral projection [12], band prioritization and band decorrelation [13],
image analysis, spectral derivative. and the minimum noise fraction transform [14], [15]. Although
very different in approach, a major purpose of these methods is
|. BACKGROUND to reduce the dimensionality of the spectral domain with min-
YPERSPECTRAL remote sensing data provide r imal loss of useful information. Even here, though, there is some

hers th unity { | vsi :Hanger of loss of important spectral information, particularly if
searchers the opportunity to pursue complex analysis 'fﬁ‘é spectral details exhibit a small variance relative to other fea-

might be difficult to carry out using traditional multispectraltures in the data set
data. These data include more spectral details and are morg hyperspectral data are more than just a large number of

adaptable to specific applications. However, using hypersp%%nds from which one may choose an optimal subset, the unique

tral information also introduces new challenges. One of BiSormation will be in the relative change of adjacent bands, i.e.,

chlallenges dlsthsmply deahng_ W't.h the gregt Increase in ?"ﬂ?the shape of the spectra. Since spectral derivatives charac-
XO ume anb ¢ et.corr(;syl)lon N9 Tcreaie mﬂ prgcessmg flt &tize spectral shape, they are likely candidates for capturing the
more substantive chaflenge IS 1o make ellective use ot Whe 4| details that would be lost by other methods. Derivative
new information available in these data. Both issues are criti alysis is a common method in laboratory spectroscopy [16]
when using the more traditional image analysis methods t Tt7] and is also suitable for remote sensing hyperspectral anal-

we(;e de_3|gr;f<_eq fo: uie with S:_”%'f srr:ectral or rtnullt(ljsriectral Id s. Unlike other spectral analysis methods, derivative analysis
and are inefiicient when applied to hyperspectral data analyShye g ot necessarily require independent reference spectra nor

nge r(;asearggers h?]veth;]/ﬂpped new lmetr}o?]s t:at are baler i depend on the magnitude of the signal. Derivative com-
adapted to address the high dimensionality of the data SUCh 4%, i jnyolves only the change in dependent variables rel-

neurql netwqus [1], spectral angle mapping [2], and grap tive to independent variables (wavelength). Thus, derivatives
cally interactive approaches [3]. Another important approa scribe the shape of the spectral curve and are sensitive to

has been the use of spectral libraries as reference data—C Qnges in shape, not magnitude.

appro.ach inherited frqm spectroscopic methods ?n ana}lytica Relatively few researchers have pursued the derivative ap-
c?errystry [4}-[6]. Itn this procI:Iedurﬁ, tTe user supplies a I|l§ra roach for hyperspectral remote sensing data analysis [18]-[24].
of reference spectra—usually refieclance measurements hough their algorithms have attained certain success, there

lected in the laboratory—to be used as a look-up table to SelgCl i imitations. These algorithms were either designed for

_trammg pixels from the images [7]. However, data collecte ecific applications (and may still require pre-existing spectral
in the laboratory are usually generated under well—controllqal raries) or only use a particular order of derivative. In a pre-
vious study [25], the authors developed smoothing and deriva-
Manuscript received November 14, 2001; revised June 12, 2001. tive procedures for spectral analysis to help identify subtle fea-
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portion of the original image, is a very low contrast feature in
the derivative, making the triangular feature more easily distin-
guishable in the derivative image.

The example in Fig. 1 demonstrates the value of derivatives
for extracting subtle information from a complex data set. On
the other hand, including derivatives initially complicates the
problem. For anV-band data set, as many &s— 2M more
potential features are added whenidith order derivative spec-
trum is computed. If different bandwidths and sampling inter-
vals are allowed this further expands the number of derivative
features to choose from, and it is crucial to select only the most
effective derivatives. Without a robust, methodical procedure for
identifying and selecting the useful derivatives, it will be diffi-
cult to use derivatives in practice.

Theremainder ofthis paperwillbe focused onthe development
and implementation of a strategy to use spectral derivatives to
strengthenthe classification ofavegetationland-cover study. Em-
phasis was placed on developing a system to help identify deriva-
tive spectra that can be added into the image in order to improve
the separability among classes, especially among categories that
are difficult to distinguish using standard classification methods.

Il. HYPERSPECTRALCLASSIFICATION AND DERIVATIVES

Supervised classification is one of the most frequently used
procedures for quantitative analysis of remote sensing data.
There are many multivariate algorithms designed for this task.
However, because these algorithms were primarily designed to
handle low-dimensional, multispectral data, problems can arise
from applying them to high-dimensional hyperspectral data.
Lee and Landgrebe [19] described the limitations inherent in
using first-order classifiers and recommended second-order
statistics for data with high dimensionality. They demonstrated
that, as data dimension increases, the differences of class
covariances become increasingly more important than class
Fig. 1. Derivative feature enhancement of a PHILLS image: (a) origindN€ans. This suggests that a variance-based algorithm such as
false-color image (B: 539.2 nm, G: 580.5 nm, R: 621.8 nm) and (b) secotide maximum likelihood (ML) classifier can be effective when
derivative image (center: 580.5 nibyw = bs = 41 nm). applied to hyperspectral image data.

The high dimensionality of hyperspectral data is a particu-
flexible choice of bandwidth and sampling intervals for comlarly serious concern when using a ML classifier. Not only does
puting derivative spectra in order to adapt to spectral featur@ssignificantly increase the computational load, there is evi-
The software has also been successfully applied to an investigance that the classification accuracy will actually decrease if
tion of vegetation reflectance and fluorescence spectra [26]. the number of features (spectral bands) becomes too large [28,

The point of using derivatives is to capture important spech. 3, pp. 142-152]. The most obvious and direct method of re-
tral details that might be otherwise lost. As an illustration of theéucing data dimensionality is to select only a few suitable bands
capacity of spectral derivatives to isolate spectral informatiofar classification. This approach has been employed in a variety
consider Fig. 1, which shows a false-color image displayirgf applications [9], [18], [29], but it may also overlook subtle,
an area of sand shoals collected using the portable hyperspgmd-useful information in the original data. Besides the methods
tral imager for low-light spectroscopy (PHILLS) sensor (1 Jamnentioned above [11]-[15], another commonly adopted feature
uary 1999, Lee Stocking Island, Bahamas) and a second-orgedtuction solution is spectral data transformation [30, ch. 10,
derivative image [see Fig. 1(b)] of the same scene. Both imaggs 239]. Among the transformation algorithms, principal com-
were created using exactly the same set of spectral bands. Ingideent analysis (PCA) and canonical analysis are the most fre-
the area marked by the bold rectangle, a triangular feature gpently used in remote sensing, [30, ch. 10, pp. 247]. The first
pears clearly in the derivative image butis difficult to distinguisfew principal component or canonical axes will usually cover
from the noise in the color image. (The feature has recentiyost of the data variations. As a result, if the low-variance, un-
been identified as an exposed patch of hard ground (limestawerected variation is primarily random noise, data can be rep-
rock) bounded by a sandy bottom [27].) It is also interesting tesented in several transformed bands without losing too much
note that seagrass, which appears as the black feature on thértfggmation [31].
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There is another advantage of feature reduction. In theory,The JM distance between clasand classy, J;;, is defined
for an V-band data set, the minimum number of training pixelas
required for each class i + 1 to prevent the covariance
matrix from becoming singular. In practice, it appears thst 2 Jij = / (\/p (z|w) — /p (x|w)) dx Q)
to 3.5V are needed (depending on the distances between class z
means) in order to obtain a misclassification rate within 5% @fherep (z|w) is the class-conditional probability that a sample
the optimal, and 1¥ to 20N are necessary for a within 1% (pixel) will have the properties (spectral responsg)give that
misclassification rate of the optimal [32]. Derde and Massa#ie sample belongs to classand wherex is a vector. For nor-
[33] indicated that for a classification with at least ten variablegally distributed class populations, (1) becomes
the rule is generally correct, but it underestimates the sample
size required for classifications with a restricted number of Jij=2(1-c"%) (2
variables. Some researchers have suggested tiatot@Gven
100N training pixels are often necessary in order to reacdere
a reliable classification result [28, pp. 151]. Unfortunately, 1 OIS
remote sensing researchers are customarily forced to werk= <(m; —mj)t{ ! J} (m; —m;)
with insufficient training data. Different techniques have been
developed to overcome this problem [34]-[38]. However, these 1 ‘%
techniques may be either unable to preserve all the information, o S r oz 3)
or require too much computational effort and may not work |27 2]

o S, et lhe poblem of et Va0 e, s e covrance macor s,

: ) . P - . As can be seenin (3), determinants of covariance matrices are

the data dimensions, the required amount of training data js_ . d for the computation of JM distances. The calculation of
also reduced. Thus, spectral transformation (e.g., PCA) ars%qu!re ; P ) ST .

matrix determinants, especially for matrices with high dimen-

indirectly helps minimize the requirement of training data SiZ%'onalit is likely to exceed machine precision boundaries and
Nonetheless, PCA is not without flaws. For example, usef 'I Y y P

low-variance information will fall into later PCs and a lar ause anumerical overflow or underflow in a computer system,
. . 99 address this issue, the determinants in (3) can be calculated
number of PCs may be required to include these features.

ia, . o . !
and Richards [39] presented a multistage segmented PC tréﬂgﬁewten—based logarithmic scales. Therefore, (3) is rewritten

formation for classifying hyperspectral images. However, son?e

researchers argued that PCA may be optimal for representing 1 R -1 1

data but not classification [40] and other feature extraction ¢ = §(mﬂ' —m;) { B } (m; —m;) + 50 (4a)
methods such as decision boundaries approach [41] and projec-

tion pursuit [42] may be more appropriate. However, given itith

relative simplicity and efficiency in representing large-variance 108(d:5)

features, PCA may still be useful if combined with algorithms 6=In [ } , (4b)
that can capture low-variance, largely uncorrelated features. The V10e(=:D /100D

task of capturing low variance, largely uncorrelated information dij = ‘ ity (4c)
again suggests the use of spectral derivatives [25]. Derivative 2

analysis is independent to the feature reduction process. \Wﬂich leads to
matter what feature reduction method is used, it can always
be combined with derivative analysis to construct a feature 1 1

e o O § =1n(10) |lg(d:;) — =g (|2:) — = lg (|2;)|. (5
set for better classification. The task of derivative analysis is n(10) [g( ) 2 g (%)) 2 g(1%50) ©®)
to identify the specific derivatives that will characterize the . . s . .
desired information. Adding the derivatives as features in tfgeAS mentioned previously, derivatives can be used to identify

classification process will then optimize the classification angatures helpful to classification, i.e., resulting in larger JM dis-

minimize the number of features required to achieve accepta&f@fes' In th'_s Sttl_de’ slpeqttrhal d?:nva:trl]vefg V\;ere destémgte(zl_ usmfg a
classification results. Inite approximation algorithm. For the first-order derivative o

a spectrumg(A), the estimation is
ds _s(Aj) = s(N)
"~ AX ©)

eA\ is the separation between adjacent bands,A&.—
Ai, and); > A;. Similarly, the second derivative is

[ll. COMPUTATIONAL PROCEDURE

To determine which features are helpful to classification,
standard must be established to measure the separability am Sr
classes. A simple and direct measurement is divergence [28, ¢h.”
3, pp. 166-170], [30, ch. 10, pp. 240-244], but there are draw- ?s  s(h) — 2s();) + s(\i)
backs to divergence as described in [28] and [30]. A better ap- E3V] ~ (BN)2 (7)
proach is to use the Jeffries-Matusita (JM) distance that com-
putes the average distance between the density functions of ltereAA = A — A; — Ai; Aw > A; > Ay Accordingly, higher
classes based on the Bhattacharrya distance [43], [44]. orders of derivatives can be obtained using iteration from the
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first derivative. Therefore, theth derivative can be represented &
as 5

O] 0 (s | sOu) =+ 5()
x|, —oax\oat)” (AX)n
_ZT Cs(M) @)
(ax)r

wherej = (2i+n)/2,if (2i+n)iseven,of = (2i+n+1)/2, 4
o . Y T ; i
if (2i + n) is odd,C}, represents the weighting coefficients. In w, ol i RBP Boundary}
this study, the computer implementation of this procedure cal¥ b, L PU i i 0
culates individualA X according to the real sampling intervals N ~ :
between Mo.bands overthe wavelength range. In addition, p.rL?r. 2. Jasper Ridge Biological Preserve (JRBP) and vicinity (reproduced
to the derivative calculation, the spectra can be smoothed. Th|§§§] a USGS DOQ).
often necessary in order to minimize the noise in computing the
derivative [45], [46]. The effects caused by different smoothinn
methods and parameters [47] are beyond the scope of this stt
and are not discussed here.

Using the above procedure, one can compute derivatives
the image, and identify the derivative features that genera
larger JM distances among target classes. These features
then be included in the classification operation to improve th
classification result. It is important to remember that no nev .
information is created by using derivatives. The purpose is 1
identify the helpful spectral features that may be too subtle t "»
be captured by other methods, so that the data dimension
the classification image can be kept as low as possible and s
achieve accurate classification results.

WECH.EEFFENTINE GFASSLAND  WWATER

IV. MATERIALS AND ANALYSIS PROCEDURE EIEFFENTINE DRASSLAND BACQUATIC VEGETATICIH
' BCHAPAFFAL AGTICULTURAL
The study site for this research is Jasper Ridge Biologici WOFEN SCRUBLAND WiFOLATED TREES
i i W SLOS ED.CANOPY POREST ® MOEST CONIFEE, FOEEST
|
Preserve (JRBP) located in the foothills of eastern Santa Cr Mo b a i RIPARLAN WOODLAND

Mountains region near Palo Alto, CA, as shown in Fig. 2. Tht
preserve consists of a rich population of diverse vegetation _ . .
communities and includes a eutrophic lake and an intermittért 8. Vegetation map of Jasper Ridge Biological Preserve (JRBP).
stream. Elevations within the area range from 66 to 209 m
above the sea level. A digital vegetation map obtained from tharrent spikes were removed, but the random noise was not fil-
preserve administration was used as the primary reference datad.
in the research. The map was created based on several aeri@he first step of processing the AVIRIS image was to extract
photographs supplemented by situ ground-truth data. The a subimage with a series of continuous wavelength bands but
aerial photographs were collected in the spring of 1995. Thesecluding wavelengths where data were too noisy because of
data were used (as the reference) to select training pixels froratrument limitations or water absorption in the atmosphere. A
the study image and later used as a ground-truth image fange of wavelength bands (from 431.7 nm, up to before the
comparing with classification results to assess the classificatimater absorption region in the infrared, 1342.5 nm) was ex-
accuracies. In order to be compatible with the study imageacted from the original image in this step. In addition, be-
described later, the vector format vegetation map was convertadise the AVIRIS instrument cannot cover the whole designated
to raster format (see Fig. 3) with 20-m spatial resolution.  spectral range with one single sensor array, it uses several ar-
The primary study imagery is an AVIRIS hyperspectral imageays with overlapping wavelength regions to ensure there are no
(Flight number: 950523C, Run 05, Scene 02) collected on Baps in the spectrum. One of the overlaps occurs within the ex-
May 95. The image was acquired in the same season of the sdraeted spectral range of the first process. Consequently, redun-
year as the data used to create the vegetation map. Therefdast bands within this overlap (band-33, 663.3 nm, to band-36,
there should be minimum deviations due to temporal chang&32.02 nm; where band-32 is 687.0 nm and band-37 is 701.59
of vegetation and other subsequent developments on site. Ting were also removed from the extracted image, resulting in a
224-band AVIRIS image has 512 lines of 614 samples co97-band image.
ering the ground from 32539’N to 37°2231'N and from The 97-band image was then geographically registered
1222122"W to 1221647'W. The digital number (DN) data to the vegetation map. The registration was done using ten
of the image had been radiometrically calibrated and the dgr&sitions with known coordinates as the control points and
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TABLE |
Hyperspectral Image =IMDI CLASSIFICATION ACCURACIES OF THE97-BAND IMAGE AND THE
TEN-BAND PCA IMAGE

_._(DJEQ (MLC) ( FR. )_ _ 97-band Image 10-band PCA Image
I Producer User Producer User
IMD I Non-Serpentine | 79% % 67% 78%
Extract I Serpentine | 31% 100% 67% 2%
[emTx| [cMmTx| o Chaparral | 68% 68% 36% 77%
1 Open Scrubland 19% 100% 14% 31%
_.--I— —— - Closed-Canopy Forest 77% 75% 55% 85%
Init. Water | 46% 95% 84% 85%
Riparian Woodland | 61% 85% 79% 73%
Overall 69% 55%
DER. derivatives Kappa 0.5851 0.4547
FR: Feature Reduction
MLC: Maximum Likeli. JM distances were also calculated. Comparing the confusion
Classification . . )
matrix of the base image to the 97-band images, some of the
TMD: Jefferie s-Matusita classes were found to have significantly lower accuracies in
No Distances the ten-PC-image. The process was then focused on increasing

CMTX: Confusion Matrix their classification accuracies.

It was hoped that given the relatively low data dimension of
the ten-PC-image, adding appropriate extra features to the data
set would improve the classification result. As mentioned be-

Fig. 4. Procedure for derivative-aided ML classification for hyperspectrfore, derivative analysis should be effective in extracting suit-
image analysis. able features from the original image, because derivatives can
capture subtle information from spectra. Therefore, derivative
using the nearest neighbor linear transformation for resafeatures with greater separability (large JM distances) of target
pling. A subarea surrounding JRBP and its proximity wagasses were identified from the derivative images and were
then extracted from the registered image. The final produgiadually appended to the base image to improve the classifi-
of the pre-processing was a 195-sample by 114-line, 97-bagigtion. In the meantime, an equivalent number of PCs were also
image with 20-m sample spacing. This image was used as Hfled into the ten-PC-image independently for comparison, but
initial working image for the subsequent ML classification anghey were not essential to the analysis.
derivative analysis. The procedure of appending derivative features was repeated
Before proceeding to the classification, a set of training daatil the classification result was satisfied or the classifier
was randomly selected from the vegetation map. Howevesached the limits (e.g., the data dimension became too high
among the 12 ground types shown in Figs. 3, five of theg|ative to the available training data). Sometimes, the appended
were not considered valid classes because of an insufficigigivative bands were highly correlated to the existing PCs or
population of “qualified” candidates for training data. For th@reviously added derivative bands and could have resulted in
purposes of this study, a pixel is regarded as a qualified trainiggsingular covariance matrix. In these cases, redundant bands
data candidate if its adjacent neighbors all belong to the sapere identified from the correlation matrix and removed from
class as the pixel itself. For each of the remaining classes ti# image.
least half of the qualified pixels were randomly selected as the
training data for that class. These training data were applied
to all subsequent supervised classification operations in the
analysis procedure. For the seven classes considered in the analysis, Table | lists
The analysis procedure for derivative-aided classification ise producer’s and user’s accuracies of the ML classification
illustrated in Fig. 4. It began with an initial ML classification(with a threshold of 0.86) from the 97-band image and the base
of the original (97-band) working image. The confusion (corimage. There are several significant changes apparent in the pro-
tingency) matrix was also generated based on the classificatthrcer’s accuracies. Two trends are of particular interest. One is
result and the vegetation map. This served as the baseline cthe-increase of serpentine grassland, water and riparian wood-
sification against which subsequent classification procedudasds in the ten-PC-image. The other is the decrease of non-
would be compared. The JM distances among classes in #seepentine grassland, chaparral and closed-canopy forest clas-
image were also calculated for later use. sification. Examination of the confusion matrices (see Table II)
The next step is to construct a “base image” by a featuigrther reveals that, for classes with seriously decreased pro-
reduction method. In this study, the first ten PCs of thducer's accuracies in the PC-image, the number of unclassified
97-band image were used as the base image. It was classifie@ls grows more significantly than for the other classes. This
using the ML classifier, and its confusion matrix and classuggests that some of the useful information was excluded in the

V. RESULTS AND DISCUSSION
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TABLE I TABLE 1l
(a) CoNFUSION MATRICIES OF THE97-BAND IMAGE AND (b) THE ACCURACIES OF THEBASE IMAGE (TEN PCA) WAITH FOUR AND EIGHT
TEN-BAND PCA IMAGE (B) DERIVATIVE FEATURES
Ci c2 C3 C4 Cs C6 c7 Total PCA+4 PCA+8
Co 134 22 203 78 - 262 12 62 773
c1| 2056 147 107 189 351 14 17 2881 Producer User Producer User
for) 0 110 0 0 0 0 0 110 Non-Serpentine 70% 7% 1% 76%
Cc3 90 43 1535 109 276 147 44 (2244 Serpentine 67% 73% 67% 74%
G| 0 » ws 1 oam 7 10| am Chaparal | 43% | 76% | 4% | 7%
c6 0 0 6 0 1 167 1 175 Qpen Scrubland 18% 38% 21% 42%
c7 15 0 0 1 55 16 483 570 Closed-Canopy Forest 59% 84% 61% 84%
Total | 2605 351 2249 608 4072 363 797 | 11045 Water 85% 85% 85% 85%
@ Riparian Woodland |  81% 72% 82% 72%
Cl c2 C3 C4 C5 co6 c7 Total 1%
CO| 5335 39 1079 301 1213 14 100| 3299 Overall 59% o
c1| 1743 30 86 127 235 12 9| 2242 Kappa 0.4990 0.5178
C2 47 236 2 18 23 0 0 326
C3 31 8 799 34 135 10 24 1041
C4 86 8 33 86 62 1 2 278
cs| 118 10 195 41 2234 3 20| 263 c " 5 ITABLEW'V i b -
cs 0 0 44 0 9 306 3 362 ONFUSIONMATRIX OF BASE IMAGE WITH EIGHT DERIVATIVE FEATURES
€71 47 o n 1161 17 630) 867 C1 ¢ € Cc4 C5 C6 C1| Toul
Total | 2605 351 2249 608 4072 363 797 | 11045 0 334 PT3 787 331 263 ] 73 3385
®) ci| 1837 35 84 140 278 16 13| 2403
CO: Unclassified (# of training pixels: N/A) 2 47 236 2 18 16 0 0 319
C1: Non-serpentine (718) C2: Serpentine (103) C3: Chaparral (828) C3 57 12 1066 50 177 9 22 1393
C4: Open Scrubland (107)  CsS: C}oscgi-Canopy Forest (1560) c4 64 7 40 129 64 0 1 305
C6: Water (124) C7: Riparian Woodland (298) cs 170 15 216 49 2482 6 13 2971
C6 0 0 43 0 9 307 3 362
o o c7 46 0 11 1 181 17 651 907
ten-PC subset, making it difficult to correctly distinguish these Toml | 2605 351 2249 608 4072 363 797 | 11045

classes.

On the other hand, for serpentine grassland, water, and o ) ) )
riparian woodland, the confusion matrix from the 97-bantie chaparral classification without any substantial negative ef-

image shows notable misclassification. The high misclassiftct on other classes. The confusion matrix (see Table V) fur-

cation rate indicates that there is considerable overlap amghsrverifies that the additional derivative features indeed reduce

individual distribution functions in the original spectral spacdn® number of unclassified pixels and assign them to the correct

It may also imply that the overlap is a result of a broadenirfg2Ss (chaparral). _ L
of the distribution due to random noise or uncorrelated, lower IN Tables Il and 1V, the misclassification rates are generally
variance features. For these classes, the distribution functi@¢§ePtable except for nonserpentine grassland (C1), chaparral

become more distinctive after spectral transformation, and #fg3), and closed-canopy forest (C5). The confusion matrices

producer's accuracies are improved in the ten—PC—image.?‘lFo show that a large number of chaparral pixels are misclass.i—
is also possible that the classifier was more effective in tfi§d as closed-canopy forest, suggesting the two classes are dif-

ten-image because the training data were more adequate t to separate in most, if not all, of the bands in the images.
for the 97-band image. Therefore, a derivative feature maximizing the discrimination

. etween chaparral and closed-canopy forest would be likely to
As seen in Table I, chaparral was the class that Suﬁiost improve the classification.

fered the greatest degradation in producer's accuracy in theI'he process of supplying derivative features with better sep-

;et?e_rzct_lEargees.toiogﬁgq;(rarl;tlhgc(t:h?a:nzlyssls ble g:n d\g;?hagg?ability to improve classification can be performed repeatedly
P P uracy by supplying Valiffith different derivative parameters until the overall accuracy is

features helpful for separating chaparral pixels from the otheg itisfied or the data dimension becomes too large for the clas-

The goal was to regain the unclassified pixels of chaparr, ier to produce a reliable classification. In this test case, 50

and other poorly classified classes without introducing grealgliivative features were ultimately added to the base image. The
misclassification to other classes. :

_ _ _ _ classification result of the final 60-band image is displayed in
Table IIl lists the accuracies of the base image with four antlg. 5 with the same color scheme used in the vegetation map
eight extra second-order derivative features with large JM digee Fig. 3).

tances between chaparral and others. The derivatives were Cafig. 6 illustrates the progression of overall accuracies and
culated at five and nine sampling intervals after smoothing wittappa values during the derivative-adding process. Accuracies
bandwidths of five and nine samples, respectively. and Kappa values for PC-only images with equivalent number
In the table, it is apparent that not only have chaparral acaf-bands are also plotted in the same figure for comparison. The
racies increased in both images, most of other classes are alscuracies are based on the pixels that are within JRBP and can
improved. This indicates that the additional derivative featurég verified from the vegetation map. As expected, the Kappa
have provided useful information to the classifier, improvingalue and overall accuracy of PC-images increase gradually as
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Fig. 5. Classification result of the base image with 50 derivative features.
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Fig. 6. Overall accuracy and kappa of PCA and derivative-added imad_@@rF'CUIar data set and class[flcatlon requirements. In any case,
(dashed lines represent values from the original 97-band image). it will be valuable to further discuss the results and phenomena

observed in the process in order to better understand the effects

the number of PCs increases, eventually exceeding, and finaljused by derivatives.
matching the accuracy for the original 97-band image. The im-Fig. 7 displays the user’s and producer’s accuracies of indi-
provements are initially large with the first few PCs, but the ratédual classes during the analysis. The user’s accuracy does not
of increase slows significantly after more than ten PCs are ichange much except for open scrubland and serpentine grass-
cluded. In fact, the first ten PCs already account for 80% of thend, reflecting the decrease of misclassified pixels of these
overall accuracy and 78% of the Kappa value achieved in ttveo classes as more derivative features are introduced into the
original 97-band image. This is the reason for using the first témage. The producer’s accuracy of chaparral climbs steadily as
PC bands as the base image in the analysis. more derivative features are appended, while accuracies of other

According to the figure, the accuracy and Kappa value cfasses are also increased or maintained at about the same level.
the derivative-added image steadily improve as more derivatiVhis supports the process of choosing derivative features with
features are added. Both values had already surpassed the txégter separability between chaparral and other classes.
inal 97-band image after 43 derivative images had been addedSerpentine grassland is the only category showing noticeable
The results are nearly identical for an equivalent number of Rigcline in producer’s accuracy. The confusion matrix of the final
bands. Given that derivative analysis requires more intensi@9-band) image is listed in Table V for examination to deter-
computation, it may not be a cost-effective method for the dat@ine the cause of the degeneration. According to the confusion
set used for this case. Nonetheless, derivatives may be partimiatrix, there are 119 serpentine pixels misclassified as nonser-
larly useful if the data include subtle, low-variance informatiorpentine, in contrast to only 30 as shown in Table 1I-B. This is
PCA is known to be useful for excluding random noise (uncothe primary cause for the decrease of serpentine grassland ac-
related variance) from multivariate data. However, if the bandsiracy. Supplying extra derivative features with higher separa-
combinations considered to be noise and excluded by PCA &ility between serpentine and nonserpentine grasslands might
actually carrying useful information, derivative analysis may b&ell improve its classification. However, serpentine grassland is
able to detect the information and make it available for classitso one of the categories with relatively few available training
fication. The utility of a derivative feature may depend on thgixels (due to their low populations in the preserve); when the
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60

TABLE V
CONFUSIONMATRIX OF THE FINAL (60 FEATURES) CLASSIFICATION 50 3
Cl C2 C3 C4 C5 C6 CI1| Total 40
co 175 21 294 97 395 9 55 1046 £ 30 3
Cl| 2065 119 116 195 364 15 12 2886 20
c2 5157 2 5 3 0 0| 172 —m63
C3 80 27 1490 105 281 32 29 2044 10
C4 6 4 1 124 7 0 0 142 0 ‘ . ‘
C5| 242 23 310 80 2876 6 55| 3592 103 93 83 73 63
C6 0 0 32 0 7 286 1 326 Training Pixels
C7 32 0 6 2 139 19 645 843
Towl | 2605 351 2249 608 4072 363 797 | 11051 (a)

100 4

data dimension increases, its classification may not improve as °°
consistently as classes with abundant training pixels. This flaw 8°
is not a function of using derivatives. Rather, it is a function of ~ 7° W
using training data that are inadequate for describing high-di- 60 —R37S
mensional distribution. 850 \

To further verify the relationship between data dimension and 40 \
training data size, an experiment was carried out on two of the 3¢ \
target classes being studied in this research. Taking the 60-ban: ,, \‘20
image as a testimage, several rounds of ML classification were 4
performed with different numbers of training pixels for ser- . ' ‘ ' ' \,3
pentine grassland and closed-canopy forest. (The former repre 1463 1263 1063 863 663 463 263 63
sents the class with few training data, while the later is the one Training Pixels
with ample training pixels available.) The relationship between (b)
training data size and producer’s accuracy is illustrated in Fig. 8.

In general, the accuracies gradually decrease as training q%.a& Accuracies of (a) serpentine grassland and (b) closed-canopy forest
size shrinks. For closed-canopy forest, the accuracy remainsegus training data size in the 60-feature image.

roughly the same level if the training data are at least five times

the spectral dimension, but drops drastically when the ratio j
less than two. This consequence corroborates the arguments:@"‘

ch different & 3%) from the result of using chaparral-only

. &Yivatives. More importantly, the chaparral classification keeps

cussed in [28], [32], aqd [33]. . ... _improving even after the operation focus has switched to closed-
The process of adding additional features became d'ﬁ!c%lénopy forest. This approach significantly strengthens the capa-

after 43 derivative bands had been appended to the base M of the derivative-aided classifier to improve an individual

in this stud_y. Asw_je fro_m_ the trammg_ data size issue, there is aﬂé}ss classification before causing a singular covariance matrix.
other consideration—it is also possible that some of the spectra

. S e 7 PAmong the seven categories considered for classification in
bands are actually noise or closely correlated (but still wnhm

" ._the preserve, open scrubland has a particularly low accuracy in
the tolerance of the clas§|f|er). Whether th_ese bands are no's.gl%perations. The primary reason is probably due to the nature
highly correlated, removing them from the image should not si

= o : . 87 the class, which is actually a mix of several cover types. With
nificantly affect the classification. Details about this issue anfl, relatively low spatial resolution of AVIRIS imagery, the in-

possible splution_s were discusse.d in [48]. One Of. the_ SOIu.tioﬁ'amogeneity of open scrubland pixels may result in high mis-
proposed in [48] is particularly suitable for the derlVat've'a'de(‘,jlassification. The confusion matrices listed in Tables IV and V

analysis and merits further discussion here. te?gg to support this hypothesis. Open scrubland pixels are mis-

So far, the selected derivatives have been exclusively ba sified more than twice as often as they are classified cor-
on creating better separability between chaparral and any of} gtly in both cases

other classes. The risk of selecting redundant or closely corre-
lated bands increases as more features are selected. According
to Fig. 7, accuracies of other classes are also improved in addi-
tion to chaparral although the added derivatives are chosen foSpectral derivatives have the potential to be useful for
better “chaparral” classification. Therefore, it is possible to usdficient classification of hyperspectral images. By supplying
derivatives intended for increasing accuracy of another class betivative features with better separability (larger JM distances)
still provide positive effects to chaparral classification. An idedbr specific classes, it may be possible to improve classification
candidate in this case would be closed-canopy forest, the clasa¢ouracy with a smaller number of features. Using producer’s
which chaparral is most likely to be misclassified according @ccuracy as the benchmark, the tests conducted in this study
Table V. To test this approach, after providing 24 chaparral-oshows that with 43 derivative features and the first ten PCs,
ented derivative bands, the preference for derivative selectimur of the seven targets are classified more accurately than
were switched to closed-canopy forest. As shown in Fig. @jth the original 97-band image, and one class remains at the
the Kappa and overall, producer’s and user’s accuracies are sene level. For the remaining two classes, the derivative-added

VI. SUMMARY AND CONCLUSION
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turing the bulk of information in relatively few features. How-
ever, they are not ideal for extracting subtle information from
complex spectra. This may not be obvious in the overall classifi-
e M cation, but is apparent when examining accuracies of individual
g BT TR classes. Derivative analysis is efficient in capturing subtle infor-
mation and can be used in conjunction with feature reduction al-
" ) gorithms to construct a feature set for better classification. The
. task is to select a relatively small number of features that will
" ) best discriminate among the desired classes. The concern of data
¢ \ . . r . ' . , . dimension and training data size emphasizes the need to com-
e press useful information into the minimum number of features.
’ A combination of variance-based and shape-based (derivative)
o features is likely to be an effective and efficient solution.
(a) The described derivative-aided analysis procedure can be
100 - used as a prototype for developing a robust hyperspectral image
. ) analysis system that can handle high-dimensional images
"r-,q = —y " r*’/é more efficiently and effectively. The design of the procedure
—— o ' is systematic and modularized. It is ready for automatic and
70 B — computerized implementation. However, there are still places
¥ / . for improvements and extensions. For example, the iteration
. / for selecting appropriate derivative features can be engi-
i ‘ neered more intelligently to reduce computational resources
© =K L] . requirements as well as to speed up the process. In addition,
a redundancy check can also be introduced into the derivative
O S S selection procedure to reduce the risk of generating a singular
- Non-Sepent G- Serpenting h:i::\(”h;vmrm} = OpenSerubl, Covariance matriX. . . . .
eClonedCanopyF —a—Water RipursanW Although vegetation classification was the primary example
(b) used in this study, the developed derivative analysis procedure
' can also be used for other applications with little or no modifi-
cations. Furthermore, there is no reason that derivative analysis
) should be restricted in ML or other supervised classification sys-
" - » S . tems. It should be valuable to explore the possibility of applying
derivative analysis to unsupervised classification and other re-
mote sensing applications.

4

”?-i;ﬁi

+ Overall m Kappa
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