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Abstract—The large number of spectral bands in hyperspec-
tral data seriously complicates their use for classification. Selec-
tion of a useful subset of bands or derived features (spectral ra-
tios, differences, derivatives) is always desirable, strongly affects
the accuracy of the classification, and is often a practical neces-
sity to keep the processing speed and memory requirements under
control. This paper examines one possible procedure for selecting
spectral derivatives to improve supervised classification of hyper-
spectral images. The procedure is designed to identify derivative
features that are more effective at separating target classes and
then add them to a base subset of features for classification. The
goal is to create the smallest set of features that will result in the
best classification result. A key issue in this process is the interplay
of the number of features and the size of the training data sets since
classification accuracy declines if the dimensionality of the feature
space is too large relative to the number of training samples.

Index Terms—Computer-aided data analysis, hyperspectral
image analysis, spectral derivative.

I. BACKGROUND

H YPERSPECTRAL remote sensing data provide re-
searchers the opportunity to pursue complex analysis that

might be difficult to carry out using traditional multispectral
data. These data include more spectral details and are more
adaptable to specific applications. However, using hyperspec-
tral information also introduces new challenges. One of the
challenges is simply dealing with the great increase in data
volume and the corresponding increase in processing time.
A more substantive challenge is to make effective use of the
new information available in these data. Both issues are critical
when using the more traditional image analysis methods that
were designed for use with single spectral or multispectral data
and are inefficient when applied to hyperspectral data analysis.
Some researchers have developed new methods that are better
adapted to address the high dimensionality of the data such as
neural networks [1], spectral angle mapping [2], and graphi-
cally interactive approaches [3]. Another important approach
has been the use of spectral libraries as reference data—an
approach inherited from spectroscopic methods in analytical
chemistry [4]–[6]. In this procedure, the user supplies a library
of reference spectra—usually reflectance measurements col-
lected in the laboratory—to be used as a look-up table to select
training pixels from the images [7]. However, data collected
in the laboratory are usually generated under well-controlled
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conditions with carefully prepared samples and can be a poor
match to field reflectance [8].

Another common tactic is to continue to use traditional mul-
tispectral classification procedures, adapting them to use hyper-
spectral data more effectively. The typical approach is to select a
few suitable bands or simple spectral features to optimize multi-
spectral algorithms, thereby reducing the hyperspectral data set
to a multivariate data set tailored to the specific application (e.g.,
[6], [7], [9], [10]). The main drawback with simply selecting a
small set of discrete bands is that there is a real danger that im-
portant spectral information will be ignored.

Several tools have been developed specifically to address the
efficient selection of spectral features from hyperspectral data
sets. Among these are band moments [11], orthogonal subspace
projection [12], band prioritization and band decorrelation [13],
and the minimum noise fraction transform [14], [15]. Although
very different in approach, a major purpose of these methods is
to reduce the dimensionality of the spectral domain with min-
imal loss of useful information. Even here, though, there is some
danger of loss of important spectral information, particularly if
the spectral details exhibit a small variance relative to other fea-
tures in the data set.

If hyperspectral data are more than just a large number of
bands from which one may choose an optimal subset, the unique
information will be in the relative change of adjacent bands, i.e.,
in the shape of the spectra. Since spectral derivatives charac-
terize spectral shape, they are likely candidates for capturing the
spectral details that would be lost by other methods. Derivative
analysis is a common method in laboratory spectroscopy [16],
[17] and is also suitable for remote sensing hyperspectral anal-
ysis. Unlike other spectral analysis methods, derivative analysis
does not necessarily require independent reference spectra nor
does it depend on the magnitude of the signal. Derivative com-
putation involves only the change in dependent variables rel-
ative to independent variables (wavelength). Thus, derivatives
describe the shape of the spectral curve and are sensitive to
changes in shape, not magnitude.

Relatively few researchers have pursued the derivative ap-
proach for hyperspectral remote sensing data analysis [18]–[24].
Although their algorithms have attained certain success, there
are still limitations. These algorithms were either designed for
specific applications (and may still require pre-existing spectral
libraries) or only use a particular order of derivative. In a pre-
vious study [25], the authors developed smoothing and deriva-
tive procedures for spectral analysis to help identify subtle fea-
tures from complex hyperspectral data sets. Their procedures
were designed to treat laboratory or field collected hyperspectral
data as spectrally continuous data. Their algorithms also allow
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Fig. 1. Derivative feature enhancement of a PHILLS image: (a) original
false-color image (B: 539.2 nm, G: 580.5 nm, R: 621.8 nm) and (b) second
derivative image (center: 580.5 nm,bw = bs = 41 nm).

flexible choice of bandwidth and sampling intervals for com-
puting derivative spectra in order to adapt to spectral features.
The software has also been successfully applied to an investiga-
tion of vegetation reflectance and fluorescence spectra [26].

The point of using derivatives is to capture important spec-
tral details that might be otherwise lost. As an illustration of the
capacity of spectral derivatives to isolate spectral information,
consider Fig. 1, which shows a false-color image displaying
an area of sand shoals collected using the portable hyperspec-
tral imager for low-light spectroscopy (PHILLS) sensor (1 Jan-
uary 1999, Lee Stocking Island, Bahamas) and a second-order
derivative image [see Fig. 1(b)] of the same scene. Both images
were created using exactly the same set of spectral bands. Inside
the area marked by the bold rectangle, a triangular feature ap-
pears clearly in the derivative image but is difficult to distinguish
from the noise in the color image. (The feature has recently
been identified as an exposed patch of hard ground (limestone
rock) bounded by a sandy bottom [27].) It is also interesting to
note that seagrass, which appears as the black feature on the top

portion of the original image, is a very low contrast feature in
the derivative, making the triangular feature more easily distin-
guishable in the derivative image.

The example in Fig. 1 demonstrates the value of derivatives
for extracting subtle information from a complex data set. On
the other hand, including derivatives initially complicates the
problem. For an -band data set, as many as 2 more
potential features are added when anth order derivative spec-
trum is computed. If different bandwidths and sampling inter-
vals are allowed this further expands the number of derivative
features to choose from, and it is crucial to select only the most
effective derivatives. Without a robust, methodical procedure for
identifying and selecting the useful derivatives, it will be diffi-
cult to use derivatives in practice.

Theremainderof thispaperwillbefocusedonthedevelopment
and implementation of a strategy to use spectral derivatives to
strengthentheclassificationofavegetationland-coverstudy.Em-
phasis was placed on developing a system to help identify deriva-
tive spectra that can be added into the image in order to improve
the separability among classes, especially among categories that
are difficult to distinguish using standard classification methods.

II. HYPERSPECTRALCLASSIFICATION AND DERIVATIVES

Supervised classification is one of the most frequently used
procedures for quantitative analysis of remote sensing data.
There are many multivariate algorithms designed for this task.
However, because these algorithms were primarily designed to
handle low-dimensional, multispectral data, problems can arise
from applying them to high-dimensional hyperspectral data.
Lee and Landgrebe [19] described the limitations inherent in
using first-order classifiers and recommended second-order
statistics for data with high dimensionality. They demonstrated
that, as data dimension increases, the differences of class
covariances become increasingly more important than class
means. This suggests that a variance-based algorithm such as
the maximum likelihood (ML) classifier can be effective when
applied to hyperspectral image data.

The high dimensionality of hyperspectral data is a particu-
larly serious concern when using a ML classifier. Not only does
it significantly increase the computational load, there is evi-
dence that the classification accuracy will actually decrease if
the number of features (spectral bands) becomes too large [28,
ch. 3, pp. 142–152]. The most obvious and direct method of re-
ducing data dimensionality is to select only a few suitable bands
for classification. This approach has been employed in a variety
of applications [9], [18], [29], but it may also overlook subtle,
but useful information in the original data. Besides the methods
mentioned above [11]–[15], another commonly adopted feature
reduction solution is spectral data transformation [30, ch. 10,
pp. 239]. Among the transformation algorithms, principal com-
ponent analysis (PCA) and canonical analysis are the most fre-
quently used in remote sensing, [30, ch. 10, pp. 247]. The first
few principal component or canonical axes will usually cover
most of the data variations. As a result, if the low-variance, un-
corrected variation is primarily random noise, data can be rep-
resented in several transformed bands without losing too much
information [31].
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There is another advantage of feature reduction. In theory,
for an -band data set, the minimum number of training pixels
required for each class is 1 to prevent the covariance
matrix from becoming singular. In practice, it appears that 2
to 3.5 are needed (depending on the distances between class
means) in order to obtain a misclassification rate within 5% of
the optimal, and 10 to 20 are necessary for a within 1%
misclassification rate of the optimal [32]. Derde and Massart
[33] indicated that for a classification with at least ten variables
the rule is generally correct, but it underestimates the sample
size required for classifications with a restricted number of
variables. Some researchers have suggested that 10or even
100 training pixels are often necessary in order to reach
a reliable classification result [28, pp. 151]. Unfortunately,
remote sensing researchers are customarily forced to work
with insufficient training data. Different techniques have been
developed to overcome this problem [34]–[38]. However, these
techniques may be either unable to preserve all the information,
or require too much computational effort and may not work
on all cases. In fact, the problem of inadequate training data
can be solved by a simpler alternative, i.e., by cutting down
the data dimensions, the required amount of training data is
also reduced. Thus, spectral transformation (e.g., PCA) also
indirectly helps minimize the requirement of training data size.

Nonetheless, PCA is not without flaws. For example, useful
low-variance information will fall into later PCs and a large
number of PCs may be required to include these features. Jia
and Richards [39] presented a multistage segmented PC trans-
formation for classifying hyperspectral images. However, some
researchers argued that PCA may be optimal for representing
data but not classification [40] and other feature extraction
methods such as decision boundaries approach [41] and projec-
tion pursuit [42] may be more appropriate. However, given its
relative simplicity and efficiency in representing large-variance
features, PCA may still be useful if combined with algorithms
that can capture low-variance, largely uncorrelated features. The
task of capturing low variance, largely uncorrelated information
again suggests the use of spectral derivatives [25]. Derivative
analysis is independent to the feature reduction process. No
matter what feature reduction method is used, it can always
be combined with derivative analysis to construct a feature
set for better classification. The task of derivative analysis is
to identify the specific derivatives that will characterize the
desired information. Adding the derivatives as features in the
classification process will then optimize the classification and
minimize the number of features required to achieve acceptable
classification results.

III. COMPUTATIONAL PROCEDURE

To determine which features are helpful to classification, a
standard must be established to measure the separability among
classes. A simple and direct measurement is divergence [28, ch.
3, pp. 166–170], [30, ch. 10, pp. 240–244], but there are draw-
backs to divergence as described in [28] and [30]. A better ap-
proach is to use the Jeffries-Matusita (JM) distance that com-
putes the average distance between the density functions of two
classes based on the Bhattacharrya distance [43], [44].

The JM distance between class-and class-, , is defined
as

(1)

where is the class-conditional probability that a sample
(pixel) will have the properties (spectral response);, give that
the sample belongs to classand where is a vector. For nor-
mally distributed class populations, (1) becomes

(2)

where

(3)

and is the covariance matrix for theth class.
As can be seen in (3), determinants of covariance matrices are

required for the computation of JM distances. The calculation of
matrix determinants, especially for matrices with high dimen-
sionality, is likely to exceed machine precision boundaries and
cause a numerical overflow or underflow in a computer system.
To address this issue, the determinants in (3) can be calculated
in their ten-based logarithmic scales. Therefore, (3) is rewritten
as

1
8

1
2

(4a)

with

(4b)

(4c)

which leads to

(5)

As mentioned previously, derivatives can be used to identify
features helpful to classification, i.e., resulting in larger JM dis-
tances. In this study, spectral derivatives were estimated using a
finite approximation algorithm. For the first-order derivative of
a spectrum, , the estimation is

(6)

where is the separation between adjacent bands, i.e.,
, and . Similarly, the second derivative is

(7)

where ; . Accordingly, higher
orders of derivatives can be obtained using iteration from the
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first derivative. Therefore, theth derivative can be represented
as

(8)

where , if 2 is even, or ,
if 2 is odd, represents the weighting coefficients. In
this study, the computer implementation of this procedure cal-
culates individual according to the real sampling intervals
between two bands over the wavelength range. In addition, prior
to the derivative calculation, the spectra can be smoothed. This is
often necessary in order to minimize the noise in computing the
derivative [45], [46]. The effects caused by different smoothing
methods and parameters [47] are beyond the scope of this study
and are not discussed here.

Using the above procedure, one can compute derivatives of
the image, and identify the derivative features that generate
larger JM distances among target classes. These features can
then be included in the classification operation to improve the
classification result. It is important to remember that no new
information is created by using derivatives. The purpose is to
identify the helpful spectral features that may be too subtle to
be captured by other methods, so that the data dimension of
the classification image can be kept as low as possible and still
achieve accurate classification results.

IV. M ATERIALS AND ANALYSIS PROCEDURE

The study site for this research is Jasper Ridge Biological
Preserve (JRBP) located in the foothills of eastern Santa Cruz
Mountains region near Palo Alto, CA, as shown in Fig. 2. The
preserve consists of a rich population of diverse vegetation
communities and includes a eutrophic lake and an intermittent
stream. Elevations within the area range from 66 to 209 m
above the sea level. A digital vegetation map obtained from the
preserve administration was used as the primary reference data
in the research. The map was created based on several aerial
photographs supplemented byin situ ground-truth data. The
aerial photographs were collected in the spring of 1995. These
data were used (as the reference) to select training pixels from
the study image and later used as a ground-truth image for
comparing with classification results to assess the classification
accuracies. In order to be compatible with the study image
described later, the vector format vegetation map was converted
to raster format (see Fig. 3) with 20-m spatial resolution.

The primary study imagery is an AVIRIS hyperspectral image
(Flight number: 950 523C, Run 05, Scene 02) collected on 23
May 95. The image was acquired in the same season of the same
year as the data used to create the vegetation map. Therefore,
there should be minimum deviations due to temporal changes
of vegetation and other subsequent developments on site. The
224-band AVIRIS image has 512 lines of 614 samples cov-
ering the ground from 3725 39 N to 37 22 31 N and from
122 12 2 W to 122 16 47 W. The digital number (DN) data
of the image had been radiometrically calibrated and the dark

Fig. 2. Jasper Ridge Biological Preserve (JRBP) and vicinity (reproduced
from a USGS DOQ).

Fig. 3. Vegetation map of Jasper Ridge Biological Preserve (JRBP).

current spikes were removed, but the random noise was not fil-
tered.

The first step of processing the AVIRIS image was to extract
a subimage with a series of continuous wavelength bands but
excluding wavelengths where data were too noisy because of
instrument limitations or water absorption in the atmosphere. A
range of wavelength bands (from 431.7 nm, up to before the
water absorption region in the infrared, 1342.5 nm) was ex-
tracted from the original image in this step. In addition, be-
cause the AVIRIS instrument cannot cover the whole designated
spectral range with one single sensor array, it uses several ar-
rays with overlapping wavelength regions to ensure there are no
gaps in the spectrum. One of the overlaps occurs within the ex-
tracted spectral range of the first process. Consequently, redun-
dant bands within this overlap (band-33, 663.3 nm, to band-36,
692.02 nm; where band-32 is 687.0 nm and band-37 is 701.59
nm) were also removed from the extracted image, resulting in a
97-band image.

The 97-band image was then geographically registered
to the vegetation map. The registration was done using ten
positions with known coordinates as the control points and
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Fig. 4. Procedure for derivative-aided ML classification for hyperspectral
image analysis.

using the nearest neighbor linear transformation for resam-
pling. A subarea surrounding JRBP and its proximity was
then extracted from the registered image. The final product
of the pre-processing was a 195-sample by 114-line, 97-band
image with 20-m sample spacing. This image was used as the
initial working image for the subsequent ML classification and
derivative analysis.

Before proceeding to the classification, a set of training data
was randomly selected from the vegetation map. However,
among the 12 ground types shown in Figs. 3, five of them
were not considered valid classes because of an insufficient
population of “qualified” candidates for training data. For the
purposes of this study, a pixel is regarded as a qualified training
data candidate if its adjacent neighbors all belong to the same
class as the pixel itself. For each of the remaining classes, at
least half of the qualified pixels were randomly selected as the
training data for that class. These training data were applied
to all subsequent supervised classification operations in the
analysis procedure.

The analysis procedure for derivative-aided classification is
illustrated in Fig. 4. It began with an initial ML classification
of the original (97-band) working image. The confusion (con-
tingency) matrix was also generated based on the classification
result and the vegetation map. This served as the baseline clas-
sification against which subsequent classification procedures
would be compared. The JM distances among classes in the
image were also calculated for later use.

The next step is to construct a “base image” by a feature
reduction method. In this study, the first ten PCs of the
97-band image were used as the base image. It was classified
using the ML classifier, and its confusion matrix and class

TABLE I
CLASSIFICATION ACCURACIES OF THE97-BAND IMAGE AND THE

TEN-BAND PCA IMAGE

JM distances were also calculated. Comparing the confusion
matrix of the base image to the 97-band images, some of the
classes were found to have significantly lower accuracies in
the ten-PC-image. The process was then focused on increasing
their classification accuracies.

It was hoped that given the relatively low data dimension of
the ten-PC-image, adding appropriate extra features to the data
set would improve the classification result. As mentioned be-
fore, derivative analysis should be effective in extracting suit-
able features from the original image, because derivatives can
capture subtle information from spectra. Therefore, derivative
features with greater separability (large JM distances) of target
classes were identified from the derivative images and were
gradually appended to the base image to improve the classifi-
cation. In the meantime, an equivalent number of PCs were also
added into the ten-PC-image independently for comparison, but
they were not essential to the analysis.

The procedure of appending derivative features was repeated
until the classification result was satisfied or the classifier
reached the limits (e.g., the data dimension became too high
relative to the available training data). Sometimes, the appended
derivative bands were highly correlated to the existing PCs or
previously added derivative bands and could have resulted in
a singular covariance matrix. In these cases, redundant bands
were identified from the correlation matrix and removed from
the image.

V. RESULTS AND DISCUSSION

For the seven classes considered in the analysis, Table I lists
the producer’s and user’s accuracies of the ML classification
(with a threshold of 0.86) from the 97-band image and the base
image. There are several significant changes apparent in the pro-
ducer’s accuracies. Two trends are of particular interest. One is
the increase of serpentine grassland, water and riparian wood-
lands in the ten-PC-image. The other is the decrease of non-
serpentine grassland, chaparral and closed-canopy forest clas-
sification. Examination of the confusion matrices (see Table II)
further reveals that, for classes with seriously decreased pro-
ducer’s accuracies in the PC-image, the number of unclassified
pixels grows more significantly than for the other classes. This
suggests that some of the useful information was excluded in the
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TABLE II
(a) CONFUSION MATRICIES OF THE97-BAND IMAGE AND (b) THE

TEN-BAND PCA IMAGE (B)

ten-PC subset, making it difficult to correctly distinguish these
classes.

On the other hand, for serpentine grassland, water, and
riparian woodland, the confusion matrix from the 97-band
image shows notable misclassification. The high misclassifi-
cation rate indicates that there is considerable overlap among
individual distribution functions in the original spectral space.
It may also imply that the overlap is a result of a broadening
of the distribution due to random noise or uncorrelated, lower
variance features. For these classes, the distribution functions
become more distinctive after spectral transformation, and the
producer’s accuracies are improved in the ten-PC-image. It
is also possible that the classifier was more effective in the
ten-image because the training data were more adequate than
for the 97-band image.

As seen in Table I, chaparral was the class that suf-
fered the greatest degradation in producer’s accuracy in the
ten-PC-image. Consequently, the analysis began with the
attempt to restore chaparral accuracy by supplying derivative
features helpful for separating chaparral pixels from the others.
The goal was to regain the unclassified pixels of chaparral
and other poorly classified classes without introducing greater
misclassification to other classes.

Table III lists the accuracies of the base image with four and
eight extra second-order derivative features with large JM dis-
tances between chaparral and others. The derivatives were cal-
culated at five and nine sampling intervals after smoothing with
bandwidths of five and nine samples, respectively.

In the table, it is apparent that not only have chaparral accu-
racies increased in both images, most of other classes are also
improved. This indicates that the additional derivative features
have provided useful information to the classifier, improving

TABLE III
ACCURACIES OF THEBASE IMAGE (TEN PCA) WITH FOUR AND EIGHT

DERIVATIVE FEATURES

TABLE IV
CONFUSIONMATRIX OF BASE IMAGE WITH EIGHT DERIVATIVE FEATURES

the chaparral classification without any substantial negative ef-
fect on other classes. The confusion matrix (see Table IV) fur-
ther verifies that the additional derivative features indeed reduce
the number of unclassified pixels and assign them to the correct
class (chaparral).

In Tables III and IV, the misclassification rates are generally
acceptable except for nonserpentine grassland (C1), chaparral
(C3), and closed-canopy forest (C5). The confusion matrices
also show that a large number of chaparral pixels are misclassi-
fied as closed-canopy forest, suggesting the two classes are dif-
ficult to separate in most, if not all, of the bands in the images.
Therefore, a derivative feature maximizing the discrimination
between chaparral and closed-canopy forest would be likely to
most improve the classification.

The process of supplying derivative features with better sep-
arability to improve classification can be performed repeatedly
with different derivative parameters until the overall accuracy is
satisfied or the data dimension becomes too large for the clas-
sifier to produce a reliable classification. In this test case, 50
derivative features were ultimately added to the base image. The
classification result of the final 60-band image is displayed in
Fig. 5 with the same color scheme used in the vegetation map
(see Fig. 3).

Fig. 6 illustrates the progression of overall accuracies and
Kappa values during the derivative-adding process. Accuracies
and Kappa values for PC-only images with equivalent number
of bands are also plotted in the same figure for comparison. The
accuracies are based on the pixels that are within JRBP and can
be verified from the vegetation map. As expected, the Kappa
value and overall accuracy of PC-images increase gradually as
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Fig. 5. Classification result of the base image with 50 derivative features.

Fig. 6. Overall accuracy and kappa of PCA and derivative-added images
(dashed lines represent values from the original 97-band image).

the number of PCs increases, eventually exceeding, and finally
matching the accuracy for the original 97-band image. The im-
provements are initially large with the first few PCs, but the rate
of increase slows significantly after more than ten PCs are in-
cluded. In fact, the first ten PCs already account for 80% of the
overall accuracy and 78% of the Kappa value achieved in the
original 97-band image. This is the reason for using the first ten
PC bands as the base image in the analysis.

According to the figure, the accuracy and Kappa value of
the derivative-added image steadily improve as more derivative
features are added. Both values had already surpassed the orig-
inal 97-band image after 43 derivative images had been added.
The results are nearly identical for an equivalent number of PC
bands. Given that derivative analysis requires more intensive
computation, it may not be a cost-effective method for the data
set used for this case. Nonetheless, derivatives may be particu-
larly useful if the data include subtle, low-variance information.
PCA is known to be useful for excluding random noise (uncor-
related variance) from multivariate data. However, if the bands
combinations considered to be noise and excluded by PCA are
actually carrying useful information, derivative analysis may be
able to detect the information and make it available for classi-
fication. The utility of a derivative feature may depend on the

Fig. 7. (a) User’s and (b) producer’s accuracies of ten PCs with additional
derivative features.

particular data set and classification requirements. In any case,
it will be valuable to further discuss the results and phenomena
observed in the process in order to better understand the effects
caused by derivatives.

Fig. 7 displays the user’s and producer’s accuracies of indi-
vidual classes during the analysis. The user’s accuracy does not
change much except for open scrubland and serpentine grass-
land, reflecting the decrease of misclassified pixels of these
two classes as more derivative features are introduced into the
image. The producer’s accuracy of chaparral climbs steadily as
more derivative features are appended, while accuracies of other
classes are also increased or maintained at about the same level.
This supports the process of choosing derivative features with
better separability between chaparral and other classes.

Serpentine grassland is the only category showing noticeable
decline in producer’s accuracy. The confusion matrix of the final
(60-band) image is listed in Table V for examination to deter-
mine the cause of the degeneration. According to the confusion
matrix, there are 119 serpentine pixels misclassified as nonser-
pentine, in contrast to only 30 as shown in Table II-B. This is
the primary cause for the decrease of serpentine grassland ac-
curacy. Supplying extra derivative features with higher separa-
bility between serpentine and nonserpentine grasslands might
well improve its classification. However, serpentine grassland is
also one of the categories with relatively few available training
pixels (due to their low populations in the preserve); when the



TSAI AND PHILPOT: DERIVATIVE-AIDED HYPERSPECTRAL IMAGE ANALYSIS SYSTEM 423

TABLE V
CONFUSIONMATRIX OF THE FINAL (60 FEATURES) CLASSIFICATION

data dimension increases, its classification may not improve as
consistently as classes with abundant training pixels. This flaw
is not a function of using derivatives. Rather, it is a function of
using training data that are inadequate for describing high-di-
mensional distribution.

To further verify the relationship between data dimension and
training data size, an experiment was carried out on two of the
target classes being studied in this research. Taking the 60-band
image as a test image, several rounds of ML classification were
performed with different numbers of training pixels for ser-
pentine grassland and closed-canopy forest. (The former repre-
sents the class with few training data, while the later is the one
with ample training pixels available.) The relationship between
training data size and producer’s accuracy is illustrated in Fig. 8.
In general, the accuracies gradually decrease as training data
size shrinks. For closed-canopy forest, the accuracy remains at
roughly the same level if the training data are at least five times
the spectral dimension, but drops drastically when the ratio is
less than two. This consequence corroborates the arguments dis-
cussed in [28], [32], and [33].

The process of adding additional features became difficult
after 43 derivative bands had been appended to the base image
in this study. Aside from the training data size issue, there is an-
other consideration—it is also possible that some of the spectral
bands are actually noise or closely correlated (but still within
the tolerance of the classifier). Whether these bands are noise or
highly correlated, removing them from the image should not sig-
nificantly affect the classification. Details about this issue and
possible solutions were discussed in [48]. One of the solutions
proposed in [48] is particularly suitable for the derivative-aided
analysis and merits further discussion here.

So far, the selected derivatives have been exclusively based
on creating better separability between chaparral and any of the
other classes. The risk of selecting redundant or closely corre-
lated bands increases as more features are selected. According
to Fig. 7, accuracies of other classes are also improved in addi-
tion to chaparral although the added derivatives are chosen for
better “chaparral” classification. Therefore, it is possible to use
derivatives intended for increasing accuracy of another class but
still provide positive effects to chaparral classification. An ideal
candidate in this case would be closed-canopy forest, the class to
which chaparral is most likely to be misclassified according to
Table V. To test this approach, after providing 24 chaparral-ori-
ented derivative bands, the preference for derivative selection
were switched to closed-canopy forest. As shown in Fig. 9,
the Kappa and overall, producer’s and user’s accuracies are not

Fig. 8. Accuracies of (a) serpentine grassland and (b) closed-canopy forest
versus training data size in the 60-feature image.

much different ( 3%) from the result of using chaparral-only
derivatives. More importantly, the chaparral classification keeps
improving even after the operation focus has switched to closed-
canopy forest. This approach significantly strengthens the capa-
bility of the derivative-aided classifier to improve an individual
class classification before causing a singular covariance matrix.

Among the seven categories considered for classification in
the preserve, open scrubland has a particularly low accuracy in
all operations. The primary reason is probably due to the nature
of the class, which is actually a mix of several cover types. With
the relatively low spatial resolution of AVIRIS imagery, the in-
homogeneity of open scrubland pixels may result in high mis-
classification. The confusion matrices listed in Tables IV and V
tend to support this hypothesis. Open scrubland pixels are mis-
classified more than twice as often as they are classified cor-
rectly in both cases.

VI. SUMMARY AND CONCLUSION

Spectral derivatives have the potential to be useful for
efficient classification of hyperspectral images. By supplying
derivative features with better separability (larger JM distances)
for specific classes, it may be possible to improve classification
accuracy with a smaller number of features. Using producer’s
accuracy as the benchmark, the tests conducted in this study
shows that with 43 derivative features and the first ten PCs,
four of the seven targets are classified more accurately than
with the original 97-band image, and one class remains at the
same level. For the remaining two classes, the derivative-added
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Fig. 9. (a) Kappa and overall, (b) user’s, and (c) producer’s accuracies of base
image with derivatives for chaparral and closed-canopy forest.

image has reached at least 90% of the original accuracy. After
adding 50 derivatives, the result indicates that five classes are
better than in the original 97-band image and the remaining
two are classified at least 92% as accurately as the original.

Regardless of the nature of the spectral features used for clas-
sification, the size of the training data set relative to the dimen-
sionality of the feature space will limit the classification accu-
racy. Feature reduction algorithms such as PCA may or may not
address this issue completely. Principal component transforma-
tion or other variance-maximizing procedures are good at cap-

turing the bulk of information in relatively few features. How-
ever, they are not ideal for extracting subtle information from
complex spectra. This may not be obvious in the overall classifi-
cation, but is apparent when examining accuracies of individual
classes. Derivative analysis is efficient in capturing subtle infor-
mation and can be used in conjunction with feature reduction al-
gorithms to construct a feature set for better classification. The
task is to select a relatively small number of features that will
best discriminate among the desired classes. The concern of data
dimension and training data size emphasizes the need to com-
press useful information into the minimum number of features.
A combination of variance-based and shape-based (derivative)
features is likely to be an effective and efficient solution.

The described derivative-aided analysis procedure can be
used as a prototype for developing a robust hyperspectral image
analysis system that can handle high-dimensional images
more efficiently and effectively. The design of the procedure
is systematic and modularized. It is ready for automatic and
computerized implementation. However, there are still places
for improvements and extensions. For example, the iteration
for selecting appropriate derivative features can be engi-
neered more intelligently to reduce computational resources
requirements as well as to speed up the process. In addition,
a redundancy check can also be introduced into the derivative
selection procedure to reduce the risk of generating a singular
covariance matrix.

Although vegetation classification was the primary example
used in this study, the developed derivative analysis procedure
can also be used for other applications with little or no modifi-
cations. Furthermore, there is no reason that derivative analysis
should be restricted in ML or other supervised classification sys-
tems. It should be valuable to explore the possibility of applying
derivative analysis to unsupervised classification and other re-
mote sensing applications.
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