
Abstract
Mapping invasive plant species in aquatic and terrestrial
ecosystems helps to understand the causes of their progres-
sion, manage some of their negative consequences, and
control them. In recent years, a variety of new remote-sensing
techniques, like Derivative Spectral Analysis (DSA) of hyper-
spectral data, have been developed to facilitate this mapping.
A number of questions related to these techniques remain to
be addressed. This article attempts to answer one of these
questions: Is the application of DSA optimal at certain times
of the year? Field radiometric data gathered weekly during
the summer of 1999 at selected field sites in upstate New
York, populated with purple loosestrife (Lythrum salicaria L.),
common reed (Phragmites australis (Cav.)) and cattail
(Typha L.) are analyzed using DSA to differentiate among
plant community types. First, second and higher-order
derivatives of the reflectance spectra of nine field plots,
varying in plant composition, are calculated and analyzed
in detail to identify spectral ranges in which one or more
community types have distinguishing features. On the basis
of the occurrence and extent of these spectral ranges, experi-
mental observations suggest that a satisfactory differentiation
among community types was feasible on 30 August, when
plants experienced characteristic phenological changes
(transition from flowers to seed heads). Generally, dates in
August appear optimal from the point of view of species
differentiability and could be selected for image acquisitions.
This observation, as well as the methodology adopted in this
article, should provide a firm basis for the acquisition of
hyperspectral imagery and for mapping the targeted species
over a broad range of spatial scales.

Introduction
The invasion of aquatic and terrestrial ecosystems by non-
indigenous plant and animal species is causing extensive
environmental and economic damage through habitat change
and loss. Whether intentionally or accidentally introduced,
these species often negatively impact the integrity, function,
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and productivity of many ecosystems by disrupting a num-
ber of physical, chemical, and biological processes inherent
in these systems (Thompson et al., 1987; Stein and Flack,
1996). In recent years, the disturbance caused to a wide
range of ecosystems has brought about significant concern
and led to a sizeable research effort.

Part of that effort has consisted of mapping the progres-
sion of invasive species through time in various geographi-
cal regions. These maps enable researchers to monitor the
status of the invasion and provide information in a format
suitable to educate decision makers or the public, and to
alert them of looming problems (for example, Byers et al.,
2002). They also serve the needs of various stakeholders
who may benefit from knowing the status of an invasive
plant in the landscape.

One of the most popular methods of gathering spatially-
distributed data on invasive species vegetation is through
remote sensing techniques. Aerial imagery has been exten-
sively used, with most documented studies using large-scale
(1:5000 to 1:10 000) aerial photography of the landscape
during key growing seasons (Armstrong, 1979; Frazier and
Moore, 1993; McCormick, 1999; Holroyd and Eberts, 2000).
Digital satellite imagery, e.g., Landsat Thematic Mapper
(TM), and color infrared photography have been the tradi-
tional sources of data (Everitt et al. 1995; Hanlon, 1995;
Rowlinson et al. 1999). More recently, hyperspectral imagery
has been used to map invasive species (Bachmann et al.,
2002; Williams and Hunt, 2002; Hirano, 2003)

In principle, because of their large number of wave-
bands (224) and narrow (10 nm) bandwidths, hyperspectral
remotely-sensed data provide researchers the opportunity to
pursue complex analysis that might be difficult to carry out
using traditional multispectral data (e.g., Underwood et al.,
2003). However, until a decade ago, practical applications of
hyperspectral information were hindered by a number of
daunting challenges (Tsai and Philpot, 2002). Among these
were having to deal with larger data volumes and correspond-
ingly longer processing times than in multispectral analyses.
Another, possibly more substantive challenge, was to make
effective use of the new information obtained from the data.
Fortunately, these obstacles have been surmounted to a
large extent over the last few years, and several methods now
exist to effectively select spectral features from hyperspectral
data sets. Some approaches used include the calculation of
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band moments (Staenz, 1996), orthogonal subspace projec-
tion (Harsanyi and Chang, 1994), band prioritization and de-
correlation (Chang et al., 1999), and the minimum noise
fraction transform (Green et al., 1988; Lee et al., 1990).
Although conceptually very different, these methods all aim
to reduce the dimensionality of the spectral domain with
minimal loss of useful information. However, a potential
danger with all of these approaches is the loss of important
spectral information, particularly if the spectral details of
interest exhibit a small variance relative to other features in
the data set (Tsai and Philpot, 2002). This danger is in
principle alleviated, or at least diminished, in Derivative
Spectral Analysis (DSA).

The conceptual basis of DSA is that, if hyperspectral data
are more than just a large number of bands from which one
may choose an optimal subset, the unique information will
be in the relative change of adjacent bands, i.e., in the shape
of the spectra (Tsai and Philpot, 2002). Since derivatives
characterize the shape of a curve, they are likely candidates
for the capture of spectral details that would be lost by
other methods (Demetriades-Shah et al., 1990). In addition,
because it focuses on the shape rather than the amplitude
of spectra, DSA does not necessarily require independent
reference spectra, nor is it sensitive to differences in illumi-
nation intensity, whether caused by changes in sun angle,
cloud cover, or topography.

DSA has been shown to be an effective method to identify
subtle features from hyperspectral data sets (Tsai and Philpot,
1998), has been used in coastal environmental studies (Philpot
et al., 1997; Philpot and Kohler, 1999; Clark et al., 2000) and
has been extended to classify hyperspectral data for land cover
applications (Tsai and Philpot, 2002). DSA has been used to
analyze unusual spectral features and to construct a yellow-
ness index for vegetation stress studies (Philpot et al., 1996;
Adams et al., 1999). It has also been used to identify subtropi-
cal tree species (Fung et al., 2000) and to classify vegetation in
a wetland environment (Qingxi et al., 1997).

To date, DSA has not been used in any invasive species
mapping or detection project, and a number of key questions
related to its application in this context have yet to be
addressed. Foremost among them is whether, in using DSA
for the purpose of mapping invasive plant species, some
dates of the year are preferable than others, i.e., lead to
easier or more accurate differentiation among plant commu-
nity types. An economical way of answering this question
is to acquire and analyze field measurements, instead of
remotely-sensed data, to narrow the time window suitable
for the application of DSA.

In this general context, the key objective of this article
is to describe and test a procedure, based on field spectrora-
diometer measurements, that identifies optimal dates for the
application of DSA to the discrimination and, eventually, to
the mapping of invasive plant species. This article focuses
on three field sites in upstate New York, each dominated by
one of three targeted plant species. Two of them, purple
loosestrife (Lythrum salicaria) and common reed (Phragmites
australis) are on the “Top 20 Invasive Plant Species” list
prepared by the Invasive Plant Council of New York State
(IPC of NYS, 2005), and are considered two of the most
widespread and damaging plant invaders in temperate North
American wetlands (Spencer, 1999). The third plant species
considered in this paper is cattail (Typha spp.). First, second
and higher-order derivatives of the reflectance spectra of
nine field plots, varying in plant composition, are calculated
and analyzed in detail to identify spectral ranges in which
one or more community types have distinguishing features.
Based on the occurrence and extent of these spectral ranges,
we determine which dates are optimal for species differen-
tiability. Attempts are then made to assess whether these

optimal dates coincide with specific growth stages or phe-
nology changes of the plants, whose occurrence can be
monitored in the field.

Methods
Field Measurements
A two-step field sampling and characterization methodology
was designed and implemented during the field season of
1999. For the purposes of this study, we chose to follow the
New York State Freshwater Wetlands Inventory System of
community type identification (Cole and Fried, 1981) and
defined a species-dominated plant community as one with
greater than two-thirds average cover by the dominant plant
over the area occupied by the plant community. Visual esti-
mation of percent cover at the canopy level was used to locate,
in upstate New York (Figure 1), representative field sites for
each of the three invasive plants of interest (purple looses-
trife, reed, and cattail). At each site, three 2.74 m by 2.74 m
sample plots were selected to capture the variability of species
composition (richness and diversity) due to site characteris-
tics. In each case, small understory vegetation was growing
mostly underneath plants of the dominant species (purple
loosestrife, reed, or cattail). Therefore, stem counts were used
at the plot scale to insure that the understory vegetation was
accounted for accurately in the assessment of plant diversity.

Figure 1. Location of the three wetland sample sites in
upstate New York.
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Plant composition at each site (Table 1) was described
following Tiner (1987), and Gleason and Cronquist (1991).

Radiometric measurements were made once a week on
the same, tagged plants within the sample plots for the
duration of the experiment. Measurements began during the
last week of June and continued until the first frost, on
15 October. An Ocean Optics dual channel SD1000 miniature
fiber optic spectroradiometer was used to measure in situ
reflectance characteristics of the sample plots at each field
location. The SD1000 is a compact, portable spectroradiometer
that uses a diffraction grating (600 lines at 750 nm) to dis-
perse the incoming light onto a silicon photodiode array with
a 50 �m slit and a GC475 filter. The SD1000 measures radiance
from 500 nm to 1000 nm with an effective bandwidth of
approximately 5 nm. The spectroradiometer was interfaced
with an OOIbase™ software package on a notebook computer

through a DAQCARD-700 PCMIA-type A/D card (Ocean Optics,1

Inc., 2005). This instrument and associated software are
designed to perform five successive measurements automati-
cally within a few seconds of each other. The mean of these
five measurements yields an average spectrum, which serves
as a basis for the computation of derivatives.

Reflectance of a plant is calculated using simultaneous
measurements of both the plant itself (target) and a reference
material with known spectral properties. For additional
calibration, dark current and standard measurements were
made of both sensors at the beginning and end of each sitting.

The sensor for the plants has a 14° field of view. At
30 cm above the plant, this translates into a 15 cm diameter
measurement window. For this study, the sensor was mounted
on a pole and held approximately 30 cm above a plant that,
with leaves, seed heads, or flowers included, was greater than
or equal to 15 cm in diameter. All measurements were taken
at 0° (nadir). The protocol was to make one measurement at
each of the three plots at each location in the afternoon of the
same day. Measurements were not taken if the wind caused
the sensor to move appreciably off-nadir or if the sky became
significantly overcast. In these cases, measurements were
resumed on the next available day.

The resulting spectra were influenced mostly by the
plants above which the sensor was positioned. However, the
spectra were also affected by site characteristics including
understory vegetation, standing water, or the underlying soil.

Data Analysis
Graphs of relative reflectance of purple loosestrife versus
wavelength were produced from the field spectra. Absolute
reflectance is given by the expression:

(1)

Target, dark, and standard radiance values were calculated
from the average of the five measurements taken at each
sitting.

We computed derivatives of different orders and at differ-
ent band separations (sampling intervals) of our field spectra
using several computational modules developed in MATLAB
(Mathworks, 2005) that are collectively known as HYPERSPEC
(Tsai and Philpot, 1998) and that are available from the corre-
sponding author upon written request. Iterative examinations
of the data resulted in the fine-tuning of a number of parame-
ters (methods for smoothing, filter size, band separation) to
optimize noise reduction and adjust the effective sampling
interval to match the scale of the spectral features of interest.
A mean-filter, smoothed finite approximation algorithm was
selected to examine the first to fifth order derivatives.

Smoothing or otherwise minimizing random noise, of
the original spectra is necessary because derivatives are
notoriously sensitive to noise. Several options are available
to smooth data, such as the Savitzky-Golay and the Kawata-
Minami’s smoothing algorithms (e.g., Tsai and Philpot, 1998).
The “mean filter” algorithm was selected in the present work,
in part because it is the most straightforward to use and
requires the least amount of computational effort. Such an
algorithm also has been shown to work well whenever the
spectral features of interest are larger than the selected filter
size (Tsai and Philpot, 1998). This smoothing algorithm simply
replaces the value of the spectrum at a given wavelength by

Relative reflectance �
(Target radiance � Dark radiance)

(Standard radiance � Dark radiance)
.

TABLE 1. PLANT COMPOSITION OF SAMPLE PLOTS FOUND IN TOMPKINS AND

CHEMUNG COUNTIES, NEW YORK. PLANTS OCCUPYING LESS THAN 10 PERCENT

OF THE PLOT HAVE BEEN OMITTED FROM THE TABLE.

Cattail meadow, Dryden, Data Collection, 01 July 1999

Percent 
Common Name Scientific Name Cover*

Plot #1 Narrow-leaved Cattail Typha angustifolia 80
Forget-me-not Myosotis scorpioides 10
Spotted Touch-me-not Impatiens capensis 10

Plot #2 Narrow-leaved Cattail Typha angustifolia 70
Spotted Touch-me-not Impatiens capensis 20
Wide-leaved Sedge Carex sp. 10

Plot #3 Narrow-leaved Cattail Typha angustifolia 60
Wide-leaved Sedge Carex sp. 20
Spotted Touch-me-not Impatiens capensis 10
Other 10

Purple loosestrife meadow, Dryden, Data Collection, 01 July 1999

Percent 
Common Name Scientific Name Cover*

Plot #1 Purple loosestrife Lythrum salicaria 50
Sedge Carex sp. 20
Soft rush Juncus effusus 10
Redtop Agrostis gigantea 10
Goldenrod Solidago sp. 10

Plot #2 Purple loosestrife Lythrum salicaria 70
Redtop Agrostis gigantea 10
Sedge Carex sp. 10
Soft rush Juncus effusus 10

Plot #3 Purple loosestrife Lythrum salicaria 40
Goldenrod Solidago sp. 40
Redtop Agrostis gigantea 10
Sedge Carex sp. 10

Reed meadow, Sullivanville, Data Collection, 15 July 1999

Percent
Common Name Scientific Name Cover*

Plot #1 Reed Phragmites communis 70
Redtop Agrostis gigantea 30

Plot #2 Reed Phragmites communis 70
Redtop Agrostis gigantea 10
Sedge Carex sp. 10
Blue vervain Verbena hastate 10

Plot #3: Reed Phragmites communis 80
Bunch or Cut grass Gramineae 5
Sedge Carex sp. 5
Other 10

*Percent cover is based on stem density measurements.

1Mention of commercial products or trade names does not
imply endorsement by the U.S. Government.
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the mean spectral value of all points within a specified
window centered at that wavelength, following the equation:

(2)

where n (number of sampling points) is the filter width and
j is the index of the middle point of the filter.

After smoothing of the data, derivatives can be calcu-
lated in a number of ways, for example by fitting a polyno-
mial or cubic spline to the spectrum, and deriving analyti-
cally the resulting equations. However, experience has
shown that a simple, numerical estimation procedure is
equally effective. Finite approximation can be used to
estimate derivatives by suitable difference schemes with a
finite band resolution, ��. In this study, following Tsai and
Philpot (1998, 2002), the first derivative is estimated by:

(3)

where �� is the separation between adjacent bands, �� � �j
� �i and �j � �i, and the sampling interval can be calculated
dynamically using sample wavelengths across spectra. The
second derivative can be derived from the first derivative as
follows:

(4)

where �� � �k � �j � �j � �i, �k � �j � �i.
In the same fashion, higher-order derivatives are

computed iteratively, and any order of derivative is accessi-
ble using the finite approximation. In general, the nth
derivative is computed as

(5)

where j � (2i � n)/2, if (2i � n) is even, or j � (2i � n
� 1)/2, if (2i � n) is odd. This means that if the position of
the resultant derivative falls between sampling points, it is
assigned to the sampling point at the next larger wavelength
or wave number. The coefficients Ck are calculated using an
iteration scheme.

In the calculations, a “boxcar” approach (Tsai and
Philpot, 1998) was used, which consists of taking the same
value for the size (bandwidth) of the smoothing filter and for
the band separation used in the computation of the deriva-
tives. We determined empirically, in successive trials, that
the value of 21 was optimal.

Results and Discussion
The reflectance spectra and the first to fifth derivatives of
the plant radiance spectra at each measurement date were
compared to assess spectral differentiability among purple
loosestrife, reed, and cattail. We looked for differences in
magnitude and slope, passage through zero of some of the
curves, differences in the sign (positive or negative) of the
derivative values, and, generally, regions where all the
curves, or at least some of them, exhibited distinct behav-
iors. This comparison could in principle be carried out
automatically using a computational module written in
MATLAB for this specific purpose. However, since in the
context of our preliminary analysis of the feasibility of
species detection using DSA, we were interested in clearly
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noticeable trends in the data, visual comparison of the
curves was deemed sufficient. Application of this procedure
is described in the following for the arbitrarily selected
spectra obtained on 23 September.

The original reflectance spectra (Figure 2) associated with
the different community types exhibit similar features, with
inflections and extremas occurring at roughly the same
wavelengths and with an increase in reflectance at the “red
edge”, around 700–750 nm. Reflectivity in the visible spectrum
range (450–750 nm) is typical of senescing plants and a mix of
dry and green vegetation. The characteristic peak-and-valley
configuration associated with chlorophyll production in
healthy green vegetation is absent from the spectra. Instead, the
curves suggest a decrease in chlorophyll absorption in the blue
and red bands, and an increase in red reflectance. For purple
loosestrife, this combination of red and green reflectance
indicates that leaves are becoming increasingly yellow and red.
For cattail, this behavior of the spectra can be explained by the
presence of brown remnants of previous year’s plants (Juan
and Shih, 1997; Juan et al., 2000). Differences between red and
NIR reflectance are relatively low in the reflectance spectra of
all three plants due to their vertical canopy structure (Spanglet
et al., 1998). In the near-infrared region, purple loosestrife has
a relatively low reflectance, which may be due to its dry
brown seedpods and senescing leaves, to interspersed brown-
ing grasses, and to effects of the underlying soil (Spanglet
et al., 1998). On the other hand, the densely planted cattail has
a comparatively high reflectance in the near-infrared region,
probably because its leaves are still mostly green.

Standard errors associated with the various curves in
Figure 2 (and in subsequent figures as well), are generally
too small to be represented in the graphs. For example, the
average standard deviations associated with the three curves
for the loosestrife-dominated plots in Dryden, in the range of
wavelengths depicted in Figure 2 are 0.006, 0.004, and
0.015, respectively for plots No. 1, No. 2 and No. 3.

In Figure 2, the reflectance spectra associated with the
cattail- and loosestrife-dominated community types are
distinct. The fact that reed does not follow the same pattern
makes it impossible to use reflectance values to distinguish
reed from the other community types, at least on 23 Septem-
ber. Further community type identification could be
achieved based on slight differences in slope or concavity in
the original spectra (Tsai and Philpot, 1998; 2002). One of
the basic tenets of derivative analysis is that these differ-
ences appear much more clearly in graphs of first or higher-
order derivatives. A second tenet is that these derivatives

Figure 2. Average reflectance spectra of three wetland
communities, acquired on 23 September 1999. (n � 5).
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Figure 4. Average second order derivatives of the
radiance spectra of three wetland communities,
acquired on 23 September 23. (n � 5): (a) reed Site
No. 3, (b) purple looseleaf Sites No. 1 and No. 2.

can be computed based on the untransformed radiance
spectra, obviating the need to compute reflectance.

As in the reflectance spectra, the first derivative of the
radiance curves (Figure 3), associated with the different
community types have similar features, with inflections
and extremas occurring at roughly the same wavelengths.
Occasionally, some slight difference may be used to distin-
guish curves. For example, at a wavelength of 670 nm, the
curves for cattail exhibit a relative minimum, whereas the
curves for purple loosestrife and reed do not. In general,
however, behavioral differences between curves are too
small to serve as diagnostic criteria. Fortunately, in a num-
ber of ranges of wavelengths, the location of the curves in
the graph can be used to distinguish one curve or set of
curves from the others (indicated by arrows in Figure 3). For
example, at several wavelengths, the curve for reed Site No.
3 lies clearly below those for the other two reed plots, as
well as those for the cattail and purple loosestrife commu-
nity types.

In the graph of the second derivatives (Figure 4), reed
Site No. 3 again has a very distinct behavior, with signifi-
cantly deeper minima and higher maxima, relative to the
other community types at a number of wavelengths (indi-
cated by arrows in Figure 4a). In two ranges of wavelength
(670–685 nm and 685–702 nm), purple loosestrife Sites 1
and 2 are also distinguishable as they are at mid-distance
between the curve for reed Site No. 3 and all the other
curves (Figure 4b). At a wavelength of 965 nm, purple
loosestrife Site No. 1 has a small but clear relative mini-
mum, in contrast with the other curves for loosestrife and
for the other community types, which exhibit a relative
minimum at a slightly lower wavelength, around 955 nm.

The graph of the third derivatives (Figure 5) exhibits
many of the same features as that of the second derivatives,
with reed Site No. 3 again having a very distinct behavior
over many ranges of wavelength. Its curve is markedly
higher or lower than the other curves. In two ranges of
wavelength (675–695 nm and 700–710 nm), purple looses-
trife Sites No. 1 and No. 2 are also distinguishable as they
are at mid-distance between the curve for reed Site No. 3
and all the other curves (Figure 4).

The preceding analysis of the first, second, and third
derivatives yields a number of wavelength intervals, or
windows, in which one or more community types have

distinguishing features that potentially could be used to
distinguish them. Higher-order derivatives did not provide
additional insight and are not mentioned further in the
following analyses. In some cases, the identified intervals
overlap entirely. This is the case, for example, with the 740
nm–750 nm intervals for reed Site No. 3 in both Figures 3
and 5. In other cases, the intervals overlap only partially, but

Figure 3. Average first order derivatives of the radiance
spectra of three wetland communities, acquired on 23
September 1999. (n � 5).

Figure 5. Average third order derivatives of the radiance
spectra of three wetland communities, acquired on 23
September 1999. (n � 5): (a) reed Site No. 3, (b) purple
loose leaf Sites No. 1 and No. 2.
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are clearly associated with the same spectral feature. For
example, the two windows at 740 nm–750 nm and 755
nm–760 nm for reed Site No. 3 in Figure 5 are associated
with the rising and descending parts of a peak centered at
750 nm, and roughly extending from 746 nm to 755 nm, in
the reed Site No. 3 curve in Figure 4. Adoption of this per-
spective allows us in Table 2 to summarize the compari-
son results in a convenient manner, by omitting the often-
redundant information provided by the second and higher-
order derivatives. For a few dates, analysis of the higher-order
derivatives reveals the existence of additional windows, for
example 668 nm–690 nm for purple loosestrife Site No. 2 on
12 August, in which discrimination of one or more commu-
nity types is possible.

The information summarized in Table 2 allows us
to determine which date is optimal for community type
discrimination. We are looking for a date for which the
individual community types (“reed”, “cattail”, and “purple
loosestrife”) are all distinguishable. A complementary cri-
terion that could be used to determine how optimal specific
dates are would be the number of spectral ranges in which
community type differentiability is manifested at a given
date. The larger the number of usable spectral ranges, the
easier it would be to map the given area.

Six dates, 15 July, 29 July, 05 August, 30 August,
03 September, and 30 September, afford good discrimina-
tion among community types. At least one and often two
plots can be identified for each individual community
type. On 30 August, the spectra allow full differentiability
for the community types. In the spectral range 680 nm to
740 nm, the first-derivative curves associated with the
reed, cattail, and purple loosestrife community types can
be distinguished from each other, i.e., the three reed curves
are distinct from the three cattail curves and the three
purple loosestrife curves.

The fact that an interval near 700 nm turns out to be
optimal for the discrimination of the targeted wetland plants
is hardly a surprise. Numerous authors have found the part
of the light spectrum near the “red-edge” to be very sensi-
tive to slight differences in plant morphology or in their
immediate environment (soil type, hydric conditions), and
therefore to be very useful to discriminate among various
plant community types (Spanglet et al., 1998; Nellis and

Tao, 1999; Fung et al., 2001; Thenkabail et al., 2002; Splajt
et al., 2003)

The fact that optimal dates occur during August is not
entirely surprising either, given the differences in the phe-
nological stages of the three plants. In a purple loosestrife
plant, up to 50 herbaceous stems rise from a common root-
stock to produce a characteristic, graceful, wide-topped
crown. Purple loosestrife has a long season of bloom (from
late June to early September in most areas). In 1999, it
started blooming in the middle of July and the majority
of buds were in full bloom, with a characteristic reddish-
purple color, by early August. By 12 August, most stems
were beginning to lose their flower masses, from the bottom
of the stems upwards, and the process was almost complete
by the beginning of September, with a progressive change of
color from purple to brown, accentuated by the presence of
brown seed heads. Concomitantly, a number of other plants
appeared and started blooming in the purple loosestrife
plots, including goldenrod (Solidago sp.) and chicory
(Cichorium intybus).

Reed has a different phenology, characterized by a
towering height of up to four meters (approximately 14 feet),
stiff wide leaves, and hollow stems. Its feathery and drooping
inflorescences (clusters of tiny flowers) that grow at the tops
of the stems are purplish when flowering and turn whitish,
grayish, or brownish when in fruit. A typical inflorescence
may be one to two feet long, and several inches wide. They
drape to one side and wave like plumes in the breeze. At the
field sites, blooming started later than for purple loosestrife,
around 05 August. By 09 September, seed heads had turned
from purple to brown. Later in the month, reed plants exhib-
ited brown to whitish tassels, on top of stems with an aver-
age height of about 225 cm.

Cattail plants typically bloom in June and July. By the
end of August, all that remains of the male-female inflores-
cences is the brown, cylindrical flower spikes, up to one
foot long, that give the cattail its name and resemble a
“sausage-on-a-stick”. The stems are dark brown with an
average height of about 210 cm. They are surrounded by flat,
sheathing, pale, or grayish-green, leaves that remain some-
what uniformly green during August and September.

Based on this phenological information (Figure 6), it
would seem that in terms of differentiability between plant
species, August would be a good candidate month. During
that month, indeed, tall reed plants harboring purple
inflorescences, progressively replaced by brownish/whitish
tassels, freely moving in the wind, provided a sharp contrast
to the shorter plants that were either uniformly green
(cattail, with vertically oriented stems and flowers) or purple
loosestrife with brown seed heads (also more consistently
oriented vertically, and therefore presenting less of a foot
print to field sensors placed vertically above the plants, or
to satellite-based cameras). By contrast, in early October,
cattail and reed plants turned brown, while purple looses-
trife plants turned reddish, providing overall less opportu-
nity to differentiate between species.

Conclusions
The key objective of this article was to describe and test a
procedure, based on field spectroradiometer measurements,
that identifies optimal dates for the application of DSA to the
discrimination of invasive plant species. This procedure was
tested on three field sites in upstate New York, each domi-
nated by one of three targeted plant species; purple looses-
trife (Lythrum salicaria L), common reed (Phragmites aus-
tralis) and cattail (Typha spp.). First, second and higher-
order derivatives of the reflectance spectra of nine field plots,
varying in plant composition, were calculated and analyzed

Figure 6. Schematic illustration of the morphology and
growth forms of (a) purple loosestrife (Lythrum sali-
caria.), (b) cattail (Typha spp.) and (c) common reed
(Phragmites australis). Note: Modified from http://www.
npwrc.usgs.gov/resource/1999/loosstrf/field.htm,
http://aquat1.ifas.ufl.edu/lytsaldr.jpg, http://aquat1.
ifas.ufl.edu/typha2.jpg, http://aquat1.ifas.ufl.edu/
phraus2.jpg (last date accessed: 22 February 2005).
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TABLE 2. WAVELENGTHS FOR COMMUNITY TYPE DISCRIMINATION WITHIN THE FIRST, SECOND, AND THIRD DERIVATIVES BY DATE, DOMINANT PLANT SPECIES,
AND PLOT NUMBER. THE NUMBERS IN PARENTHESES CORRESPOND TO PLOTS THAT CAN BE DISCRIMINATED AT A GIVEN WAVELENGTH.

First Derivative Second Derivative Third Derivative 
Date (1999) Plant Plot Wavelength (nm) Wavelength (nm) Wavelength (nm)

06-July reed 2 500–670, 680–730,745–770,
780–880,920–935,970–1025

cattail 1 & 2 685–700,815–820,840–845, 965–975
865–875,922–934,965–975

15-July reed 1 523–536,550–570,610–625,
666–685,695–700,940–970

reed 2 540–550,570,610,620,
640,665,950–995

cattail 2 555–575
pl 1 510–550,637–645,685–710,750

22-July reed 1 & 3 550–570(1),595–620(1),670–685(1), 907
705–725(1),782–797(3),880(1),
870–880(3),897–915(3),905(1),
955–960(1)

pl 1,2,3 560–585(2), 685–715
29-July reed 1& 3 510–525(1),540–545(1,3),585(1),

592–670(1,3), 677–740(3)
cattail 1 & 3 525–535,750–765,765–775,780–940
pl 1 & 3 540–545(3),595–635(3),600–605(1), 600–605(1)

658(3),665(3),690–725(3),755(3)
05-August reed 1 & 3 528–547(1),530(3),553–572(1),555(1,3),

560–580(3), 680–680(1),705–740(1),
750(3),955–965(1)

cattail 1 555
pl 3 590–635(1,3),665(3),690(3) 604(1)

12-August reed 1 & 2 545(1),550(2),565(1,2),700(1,2),710(1,2),
730(1,2),750(3),655–668(1),766–776(3)

pl 2 668–690 668–690
30-August reed 2 & 3 750–775(2,3) 572–588(1),720–728(3)

cattail 3 565–592,705–720,720–740
pl 1 & 3 500–550(1),570–590(1),630–645(1,3),

650–660(1,3),690–710(1,3),735(1),
740(3),765–775(1,3)

all 3 680–740
03-September reed 1 & 2 505–530(1&2),535–575(1),660–710(1),

740–750(1),752–762(1,2),770–860(1),
880–900(1),912–923(1),960–995(1)

cattail 1 & 2 505–520(1,2),605–620(2),623–633(1,2),
670–700(2),920–935(1)

pl 2 505–520,905
09-September reed 1,2,3 520–535,540–560 580–585

pl 2 690–704
18-September reed 1 & 2 650–680,720–740,746–755,765,

910–920,922–935
cattail 1 & 2 650–680,720–740,746–755,765, 965

910–920,922–935
23-September reed 3 520–530,560–575,630–650,700–720,

740–750,755–765,770–810,830–920,
930–940,950–970

pl 1 515–530,580–590,655–665(2), 665–670, 
678–698(1,2), 965

30-September reed 1,2,3 625,805
cattail 1 540–555,590–620,640–675,690
pl 1 505–535,(1,2,3), 535–592, 625–640(1,2,3), 

655–680(2), 660–680(1,3), 928–960(2),
675,695–700,750, 935–970(3)

07-October cattail 1,2,3 665–670
pl 1 & 3 675–700(1,3)

15-October reed 1 & 3 500–525,570,620,635,745,755,920
cattail 1 670

in detail to identify spectral ranges in which one or more
community types have distinguishing features. Experimental
results, illustrated in Figures 3 to 5 and are summarized
in Table 2, suggest that six dates, between 15 July and 30
September, offered the highest potential for differentiation
among community types. Optimal differentiability occurred

on 30 August, when the three community types (reed-,
cattail, and loosestrife-dominated) could be discriminated
completely in the spectral range 680 nm to 740 nm typically
associated with the “red edge”, which other authors have
also found to be diagnostic of plant community types
and environmental conditions. The date of 30 August
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corresponds to a time of significant changes in the phenology
of the targeted wetland plants, in particular the progressive
replacement of flowers by seed heads and the preferential
growth of reed plants relative to other plants in the wetlands.

Now that the present, preliminary study has determined
the time of year that appears optimal for the discrimination of
wetland plant community types using DSA, the next step of the
research would be to perform a land cover classification on
hyperspectral images of selected wetland areas acquired in late
August. Spectral derivatives in a number of training sites could
be compared and provide information on whether the spectral
ranges identified in the present article would once again allow
discrimination among community types, or whether other
spectral ranges would be preferable. To achieve this objective,
several improvements and extensions to the approach devel-
oped in this research would be worthwhile. In particular, a
computer program could be developed to replace the visual
inspection. Finally, an additional area for further research
would be to compare and contrast the DSA method with other
techniques that have been used to map invasive species, e.g.,
the continuum removal of key areas of the spectrum.
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