
Geometric Correction

Operations intended to restore or compensate the 
distortions of an image in geometry.

Sources of geometric distortions:
➢Sensor characteristics
➢Viewing geometry
➢Platform motion
➢Target motion



A. Sensor Characteristics
● optical distortion
● aspect ratio
● non-linear mirror velocity
● detector geometry & scanning sequence 

aircraft/satellite motion (pitch, roll, yaw)

B. Viewing Geometry

C. Platform Motion

D. Target Motion

● panoramic effect
● earth curvature

● attitude changes
● position variations

● earth rotation
● moving targets

Distortion Sources



Symptoms

Geometric Distortions usually appear as:
➢ changes of scale over the image
➢ irregularities in the angular relationships 

among the image elements
➢ displacement of objects in an image
➢ occlusion of one image element by another



Corrections

The nature of the "correction" depends 
upon
the ultimate use of the data:
 area measures ==> equal area projection
 shape measures ==> projection that preserves 

the angular relationships of the scene

Correcting the distortions is often costly
 computer & operator time
 affects spatial and radiometric resolution



Sensor Characteristics 1:
Optical Distortion:

original negative (barrel) 
distortion

positive (pincusion) 
distortion

Note: This type of distortion is not usually a serious problem in remote 
sensing systems.

These distortions are radially symmetric
and characteristic of the optical system.



Sensor Characteristics 2:
Aspect Ratio:

If displayed in square pixels system, the image is 
distorted.



Sensor Characteristics 3:
Non-linear mirror velocity:

● Uniform pixel spacing along a scan line 
presumes that the mirror velocity is constant.

● An oscillating mirror (MSS, TM) must stop at 
the end of each scan and reverse direction.



Sensor Characteristics 4:
Detector geometry and scanning sequence

Presumptions for a regular sampling pattern:

a) the detectors are all exactly in the focal plane

b) the scanning sequence and timing will exactly 
overlay detectors for different spectral bands



Viewing Geometry: panoramic effect

2α = ω

a scale distortion (an increase in cell size) for observations away from 
nadir due to an increase in the area covered by the sensor.



Viewing 
Geometry: 
panoramic 
effect

Curved earth version
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panoramic effect 
 examples



Platform motion: Attitude changes

Pitch: "Vertical rotation of a sensor platform, 
in the 'nose up' plane."

Changes in pitch will result in changes in the
spacing of the scan lines.



Platform motion: Attitude changes (cont.)

Roll causes lateral shifts in the scan line 
position.

Roll: "Rotation of a sensor platform around the 
flight vector, hence in a "wing down" 
direction."



Platform motion: Attitude changes (cont.)

Changes in yaw will result in scanlines that 
are not parallel.

Yaw: "Rotation of a sensor platform in the 
horizontal plane, or about its 
vertical axis, hence in a "nose right" 
direction."



Platform motion: position changes 

1. altitude - results in variations in scale
2. slew - motion of the aircraft or satellite 

perpendicular to the intended 
direction of motion



Target motion

➢ Distortion will depend entirely on the nature of that 
motion relative to the sampling rate & sequence of 
the imaging system.

➢ When the motion of the scene is of the same order 
as the sampling rate the image will be blurred.

➢ A photo of a nearby building taken from the side 
window of a car moving at 50 mph when the 
shutter speed is 1/60 second, will result in a blurred 
image



Target motion : earth rotation

➢ The rotation of the earth is slow relative 
to the sampling rate of the Landsat 
MSS (~ 0.4 µs/pixel) and it is even 
slow relative to the scan rate (~33 
ms/scan). Thus, there is no obvious blur 
in the final image.

➢ However, between the time that the first 
scan of a Landsat MSS image and the 
time of the last scan, the earth will have 
rotated a significant distance relative to 
the size of a resolution element.



"Exact" Geometric Corrections

When enough is known about the source of the
geometric distortions, it may be possible to
approximate an ideal correction.

Example: Earth rotation

a)Displacement is nearly perpendicular to 
the flight path (along the scan line).

b)Rate of displacement is related to the 
orbital velocity and the angular velocity of 
the earth (predictable)



(Ideal ) Earth Rotation Correction

➢ only shifts by integral units of the 
sampling interval are allowed.

➢ no resampling (other than the pixel shift) 
is required.



(Ideal ) Optical Distortion Correction
➢ Displacement of each pixel is radial.
➢ Amount of displacement is defined by the optics of the 

system.

a) the amount of the shift is proportional to the distance from 
the optical axis

b) the shift direction varies over the image

c) requires shifts by non-integral units of the sampling 
interval

d) requires resampling



(Ideal ) Optical Distortion Correction



Airborne Imagery Orthorectification



Airborne Imagery Orthorectification

CASI airborne hyperspectral imagery



Using Level 2C or higherFusioned

Orthorectified (w/ GCPs & DTM)Level 4

Rigorous geo-correction (w/ GCPs but w/o DTM)Level 3

Systematic geo-correction (but also corrected for 
mosaic from across strips)

Level 2C

Systematic geometric correctionLevel 2

Raw image (relative radiometric correction only)Level 1A

Different Levels of Satellite RS Products



L1A L2 L4

Comparison of Different Levels



Displacement

Overlay with 1:5000 Vector Data

Level 2 Level 4



Level 2 Level 2C
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Correction by Rational Function Model (RFM)

● No ephemeris data required
● Simple and fast to carry out
● Less ground control points required
● May be difficult to achieve high level 

orthorectification



Rigorous Correction (Orthorectification)
● Require ephemeris
● Require more ground control points
● Complex mathematics
● Can achieve high level orthorectification

Procedure
Position and Attitude Correction
– Initial conditions

– Attitude correction

– Position correction

– Least-squares collocation

Orthorectification
– Back projection

– Resampling



GCP 
( X,Y,Z)

GCP

GCP

Satellite 
Orbit

G−P=S⋅M z t ⋅M y t⋅M x t − U

t=01 t2 t 2
3 t3

t=01 t2 t 2
3 t3

t=01 t2 t 2
3 t3

M x , M y , M z : rotation matrix
t ,t ,t : attitude angles
~0~3 : coefficients
t : time

Attitude Correction



GCP
GCP

GCP

After Correction

Satellite Orbit

( X,Y,Z)

Position (Orbit) Correction

G− P P t =S U '

 P t=[
X 0X 1 t
Y 0Y 1 t
Z 0Z 1 t ]

Observation after 
correction

U ' :



Least-Squares Adjustment

1. Objective: eliminate local errors

2. How: Dk= k [k ]
−1 k

k :
Dk :
k :
k :
k :

x, y, z

Adjustment of targets in k direction

Covariance between targets and GCPs

Covariance matrix of GCPs

Residual of GCPs



Backward Projection
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From world coord. To image coord.

 r(t)=vector from Ａ to projection center at anytime, t
 n(t)=normal vector of principal plan
 f(t)=r(t) n(t )=0‧
 Use Newton-Raphson iteration to solve t



Backward Projection (cont.)

Projection Center

V f

V l

)(tr

FOV

S

Line = t−t0/integ _ time
Sample = s/FOV /N



Simple Geometric Correction Procedures

1. Select the appropriate projection or reference map (or 
image).

registration: simple point-to-point match of an 
image to another image or map,

rectification: correcting an image to a specific 
map projection.

2. Select a regular grid which fits the desired projection (i.e., 
determine the spacing and position of the grid points.)

NOTE: Step 1 and 2 depend on individual applications.



Geometric Correction Procedures (cont.)

3. Select a set of "ground control points" (GCP's) – pixels 
whose locations can be determined accurately in the base 
map and the image.

4. Define the transformation and compute the positions of the 
reference grid points in the image coordinate system. The 
transformation should deform the grid in such a way that the 
average distance between GCP pixels and their map locations 
is minimized.

5. Resample the image data in order to assign gray values to 
each grid point.



Map Projections
There is no perfect map projection.
Projections may preserve

area
or shape
or direction
or distance

For small enough areas, all factors may be
preserved within the precision of the 

sampling.



http://www.colorado.edu/geography/gcraft/notes/mapproj/mapproj_f.html
Map Projections, by P. H. Dana, 2004

Mercator Projection



Universal Transverse Mercator (UTM) Projection



Ground Control Points (GCP's)
Pixels whose locations can be determined accurately in the 
base map and the image, used to create the mapping of the 

image to the base map.

For each control point the pixel coordinate must be 
matched with the coordinate of the control point in the 

desired coordinate system.

Selection of Ground Control Points
Pixels used for GCP's should be:

 easy to locate accurately on the base map.
 easily recognizable features or landmarks in the image.

➢ crossroads
➢ land/water boundaries
➢ cultural features (airstrips, buildings, etc.)

Examples;



Image-to-Map registration example:



Geometric Transforms Procedure

1.Select a set of GCP's

2.Select a transformation (linear, 2nd order, 3rd order, 
...)

3.Determine the coefficients that will minimize the 
error (RMSE).

4.Analyze the residual errors.

5.Adjust the selection and placement of GCP's.

6.Repeat steps 3-5 until the error is acceptable.



Linear Transformation

Translation
Rotation x' = ysinθ + xcosθ

y' = ycosθ – xsinθ
Scaleing x' = mx y' = ny

x' = x + x
0

y' = y + y
0

General linear transformation:

x' = a
0
 + a

1
x + a

2
y

y' = b
0
 + b

1
x + b

2
y



Non-Linear Transformations

Typically non-linear, polynomial fit such that:

x' = a
0
 + a

1
x + a

2
y + a

3
xy + a

4
x2 + a

5
y2 + . . .

y' = b
0 
+ b

1
x + b

2
y + b

3
xy + b

4
x2 + b

5
y2 + . . .



Resampling

A process in which each data point (pixel) in 
the base map coordinate system is assigned a 
value (intensity, gray value, etc.) based on the 
gray values of local image pixels.

Consider an example in which an image of a 
checkerboard pattern is geometrically 
corrected.



Resampling



Nearest-neighbor Resampling

The gray value of the image pixel is assigned to
the nearest base map coordinate:

➢ the value assigned to the grid point will probably not be the 
same as that which would have been measured at that point.

➢ tends to result in a blocky appearance at sharp boundaries.

➢ the base map grid values correspond to actual measured 
values.

➢ fastest and cheapest method of resampling.

➢ does the least radiometric damage to the data.



Nearest-neighbor Resampling



Bilinear Interpolation

Two-dimensional linear interpolation (3 operations)
Uses the four nearest neighbors

➢ the base map grid values correspond to a weighted 
average of the four nearest neighbors

➢ relatively fast computation.

➢ smoothes out the blocky appearance apparent with 
nearest-neighbor resampling (anti-aliasing).

➢ increases the effective resolution cell size.



Bilinear Interpolation

➢ The contribution of a pixel is inversely proportional to it's 
distance from the resampled pixel.

➢ Example above illustrates undersampling.
➢ Dark squares are sets of original pixels for which there 

are no corresponding resampled pixels.



Bilinear Resampling



Bicubic Interpolation

Two-dimensional cubic interpolation (3 operations)
Uses the 16 nearest neighbors

➢ the base map grid values correspond to a weighted 
average of the sixteen nearest neighbors

➢ (a lot) more computation than bilinear interpolation.

➢ smoothes out the blocky appearance apparent with 
nearest-neighbor resampling (anti-aliasing).

➢ further increases the effective resolution cell size.



Geometric Registration: Example, image to map

Adapted from: University of Arizona Tutorial on geometric correction



Geometric Registration: selecting GCP's



Geometric Registration: registration

Number of control points: 3
Control points:

Point # x y x' y'
1 198 157 213 292
2 105 162 120 300
3 260 195 275 325

Linear Transformation:

x = -15 + x'
y = -166 + 0.04 x' + 1.0783 y'

RMS Error: 1.3610e-11
(at control points)

Is this a reasonable registration?
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